الجمهورية الجزائرية الديمقراطية الضحبية

التاريك: /02/2009

ثانوية مالك بن أنى العلمة

امتكان الفصل الثاني في مادة العلوم الفيزيائية

الهنة الثالثة علوم تجريبية

рH

14L

0

2.5

5

المدة: 2 ها

التمرين الأول:07 ن

. $K_{\rm e} = 10^{-1}$ حيث حوذة عند الدرجة $25^0 \, {
m C}$ حيث خوذة

يعطى K_a(HCOOH/HCOO⁻)=1,78 .10⁻⁴. pK_a(HCOOH/HCOO⁻)=3.8

. pH=2,9 وله C_A تركيزه HCOOH أحمض الميثانويك الحمض (S_A) وله C_A

1-1 : أكتب معادلة تفاعل HCOOH مع الماء وبين الثنائيتين أساس/حمض المشاركتين في التفاعل .

2-1 : أنشئ جدول التقدم للتفاعل .

: بين أن نسبة التقدم النهائي τ للتفاعل تكتب على الشكل أحسب قيمة τ .

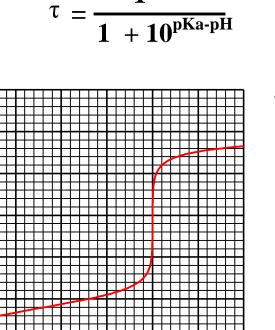
. استنتج تركيز المحلول (S_A) .

 * - لتحديد تركيز المحلول (S_A) بواسطة المعايرة ، نأخذ حجما V_A = 10ml من المحلول (S_B) ونعايره بمحلول V_A = 10ml الصوديوم تركيزه V_B = 1,0 .10 mol /L البيان أسفله V_B = 1,0 .10 pH=f(V_B). V_B

1-2: أكتب معادلة تفاعل المعايرة.

. $(V_{BE}\,,\,pH_E)$ حدد إحداثيات نقطة التكافؤ : 2-2

النتيجة (S_A) المحلول (S_A) النتيجة : 3-2


توافق ما تم التوصل إليه سابقا.

4-2 : أحسب كمية شوارد الهيدروكسيد (OH) في الخليط عند إضافة $V_B = 5 \mathrm{ml}$ من المحلول الأساسي ثم أحسب قيمة

التقدم النهائي م للتفاعل ، ماذا تستنتج؟

5-2: حدد الأفراد المتواجدة في الخليط،

أ حسب pH = 3.8 أ حسب تراكيزها من أجل

التمرين الثاني: 07ن

يمكن تمثيل جهاز الصدمات القلبية الذي يستعمل في الحالات الطبية الإستعجالية بالشكل المبسط التالي:

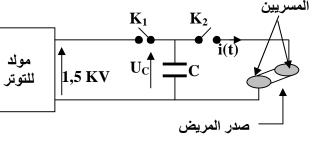
- سعة المكثفة : C=470µf .
- صدر المريض يمكن اعتباره ناقل أومي مقاومته

 $R=50\Omega$

C نشغل الجهاز بغلق القاطعة K_2 K_1 مفتوحة) فتشحن المكثفة

المرحلة الأولى:

1*- من بين الوثيقتين (1) و (2) أيهما يمثل هذه الحالة ؟ مع التبرير


 $_{ au}$ - باستعمال الوثيقة الموافقة ، احسب ثابت الزمن $_{ au}$

3*- عين قيمة الطاقة العظمى المخزنة في المكثفة.

4*- بفرض أن المكثفة تشحن كليا عندما يصبح التوتر بين طرفيها %97 من التوتر الأعظمي .

ما الزمن Δt اللازم لشحن هذه المكثفة .

 $_{5}$ عارن هذه القيمة Δt مع القيمة الاعتيادية $_{5}$

7,5

10

12,5 15 **v_bml**

المرحلة الثانية: في اللحظة t_0 تغلق القاطعة K_1 (K_2 مفتوحة) فتفرغ المكثفة بإرسال صدمات كهربائية بوضع المسريين على صدر المريض بحيث تنتهي عملية التفريغ يتغير التوتر المختارة 400joule، أثناء عملية التفريغ يتغير التوتر الكهربائي بين طرفي المكثفة وفق العلاقة K_1 (K_2 (K_3) على الكهربائي بين طرفي المكثفة وفق العلاقة K_1 (K_2) عند التوتر التوتر

 $P_{\mathbf{C}}(\mathbf{t}) = \mathbf{A} \mathbf{e}$. RC , A : عين قيم الثوابت \mathbf{R} .

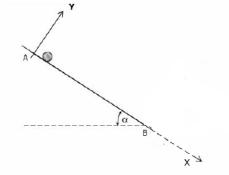
. q(t) ماهي العلاقة بين شدة تيار التفريغ i(t) والشحنة الكهربائية 2^*

 $U_{C}(t)$ والشحنة الكهربائية $U_{C}(t)$ والشحنة الكهربائية $U_{C}(t)$.

. R , A بدلالة B بدلالة B عبر عن الثابت B بدلالة B بدلالة B -*4

عملية التفريغ تتوقف بمجرد أن تحرر الطاقة المختارة في البداية 400joule .

1*- حدد بيانيا باستعمال إحدى الوثيقتين السابقتين الزمن t₁ الموافقة لنهاية عملية التفريغ.


 $U_{
m C}(t_1)$ في هذه اللحظة وتأكد من ذلك بيانيا . $U_{
m C}(t_1)$

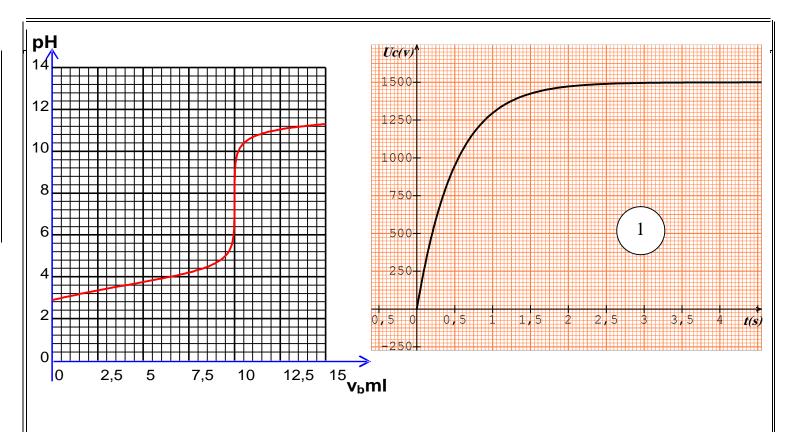
التمرين الثالث: 06ن

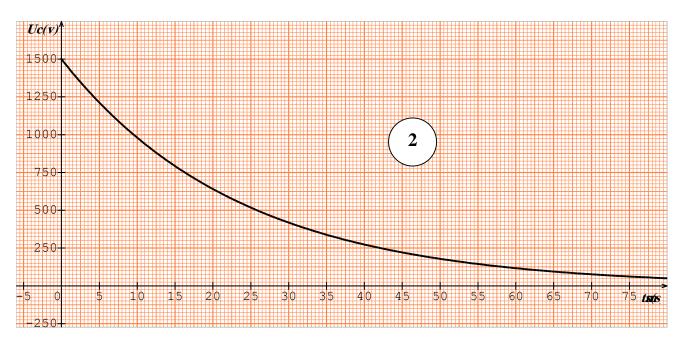
تتحرك كريه نعتبرها نقطية ،كتلتها m=900g على مسار ABC حيث:

 $g=9.8 m.s^{-2}$ جزء مستقيم مائل بزاوية $\alpha=30^\circ$ بالنسبة للمستوي الأفقي، نعطي $AB=9.8 m.s^{-2}$ تنطلق الكريه من النقطة $AB=0.8 m.s^{-2}$ بالنسبة للمستوي الأفقي، نعطي $AB=0.8 m.s^{-2}$ فنحصل علي التطلق الكريه من النقطة $AB=0.8 m.s^{-2}$ التسجيل التالي:

نعتبر لحظة انطلاق الكريه من الموضع G_0 والذي يوافق النقطة A مبدأ الأزمنة و المدة التي تفصل تسجيلين متتاليين هي $\tau=80 {
m ms}$

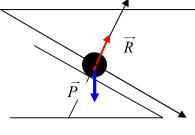
 t_4 و t_3 , t_2 اللحظات t_3 , المحظات t_3 , المحظات t_3 المحظية للكريه في اللحظات t_3

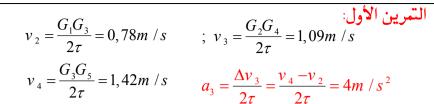

لحظات مرور الكريه بالمواضع G_3 , G_2 على الترتيب.

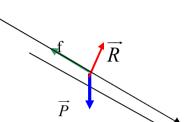

 t_3 المنتج القيمة a_3 المعاع تسارع مركز عطالة الكريه في اللحظة a_3

a حدد باستعمال القانون الثاني لنيوتن عبارة التسارع النظري a للكريه أثناء حركتها فوق المستوي المائل في غياب الإحتكاكات ثم أحسب قيمته .

AB بأن الحركة تتم بوجود احتكاكات على الجزء a و a بأن الحركة تتم بوجود احتكاكات على الجزء AB أحسب شدة القوة f التي تكافئ هذه الاحتكاكات و التي نعتبر ها ثابتة على طول القطعة AB


بالتوفيق أهاتضة ماد العلوم الفيزيائية





كسربب (الإمتماك (الثاني لماءة (العلى (الغيزيائية جعرى

3) الجملة المدرسة (كرية) ، نعتبر المعلم المرتبط بالارض عطاليا.

 $\sum \overrightarrow{F_{ex}} = m \cdot \overrightarrow{a}$ بتطبيق القانون الثاني لنيوتن في هذا المعلم:

$$\overrightarrow{P} + \overrightarrow{R} = m \cdot \overrightarrow{a}$$

 $\overrightarrow{P} + \overrightarrow{R} = m . \overrightarrow{a}$ بالإسقاط على محور الحركة(OX):

 $P \sin \alpha = m a$ $a = g \sin \alpha \Leftrightarrow a = 4.9m / s^2$

4) الحركة على المستوي المائل كانت تتم بوجود قوى إحتكاك.

 $\sum \vec{F}_{ex} = m . \vec{a}_3$ بتطبيق القانون الثاني لنيوتن، وإدخال قوة الإحتكاك:

$$\overrightarrow{P} + \overrightarrow{R} + \overrightarrow{f} = m . \overrightarrow{a}$$

بالإسقاط على محور الحركة:

 $mg.\sin\alpha - f = ma_3$

$$f = m(a - a_3) = 0.9x \ 0.9 = 0.81N$$

 $HCOOH_{(aq)} + H_2O_{(l)} = HCOO_{(aq)}^- + H_3O_{(aa)}^+$

$$HCOOH_{(aq)} = HCOO_{(aq)}^{-} + H_3O_{(aq)}^{+} \longrightarrow HCOOH_{(aq)}/HCOO_{(aq)}^{-}$$

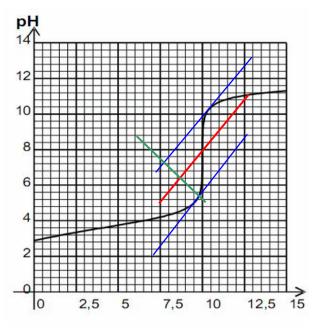
$$H_2O_{(l)} + H^+ = H_3O^+(aq)$$
 \longrightarrow $H_3O^+(aq)/H_2O_{(l)}$

جدول التقدم:

لتمرين الثاني:

المعادلة	$HCOOH_{(aq)} + H_2O_{(l)} = HCOO_{(aq)}^- + H_3O_{(aq)}^+$				
الحالة	التقدم	كمية المادة بmole			
الحالة الإبتدائية	x=0	n ₀	زيادة	0	0
الحالة الإنتقالية	x(t)	n ₀ -x(t)	زيادة	x(t)	x(t)
الحالة الأعظمية	$x_{max}=n_0$	n ₀ -x _{max}	زيادة	X _{max}	X _{max}
الحالة النهائية	$x_f = 10^{-pH}.V$	n ₀ -x _f	زيادة	X _f	Xf

$$\tau = \frac{x_{f}}{x_{\text{max}}} = \frac{\left[H_{3}O^{+}\right]}{C} ; \qquad pH = pKa + Log \frac{\left[HCOO^{-}\right]_{f}}{\left[HCOOH\right]_{f}}$$


$$Log \frac{\left[HCOO^{-}\right]_{f}}{\left[HCOOH\right]_{f}} = pH - pKa ; \qquad \frac{\left[HCOO^{-}\right]_{f}}{\left[HCOOH\right]_{f}} = 10^{pH - pKa} ; \qquad \left[HCOO^{-}\right] = \left[H_{3}O^{+}\right]$$

$$[HCOOH] = C - [H_3O^+] \Rightarrow \frac{C - [H_3O^+]}{[H_3O^+]} = 10^{pH - pKa}$$

$$\frac{c}{[H_3O^+]} = 1 + 10^{pka - pH} \Rightarrow \tau = \frac{1}{1 + 10^{pka - pH}}$$

$$\tau = 0,111 = 11,1\%$$

معادلة تقاعل المعايرة:

 $HCOOH_{aq} + OH_{aq}^{-} \rightarrow HCOO_{aq}^{-} + H_3O_{aq}^{+}$ احداثيات نقطة التكافؤ:نستعمل طرقة المماسات $(V_{eq}=10ml; pH_{eq}=7,8-8)$

 $C_{d}V_{a}=C_{b}V_{b\acute{e}g}\Rightarrow C_{a}=10^{-2}mol/l$ عند التكافؤ: وهي متوافقة مع النتيجة السابقة في حدود أخطاء القياس حساب n_{OH} عند اضافة $V_B=5$ ml عند اضافة

$$pH = PKa = 3.8 \Rightarrow [OH^{-}] = 6.3.10^{-11} mol / l$$

 $n_{(OH^{-})} = [OH^{-}].(V_a + V_{b\acute{e}q/2}) = 9.46.10^{-14} mol$

$$\tau = \frac{\left[H_3O^+\right]}{C} = 0,0158 \approx 1,6\%$$

الافراد المواجدة في المزيج لما 3,8 PH=3,8

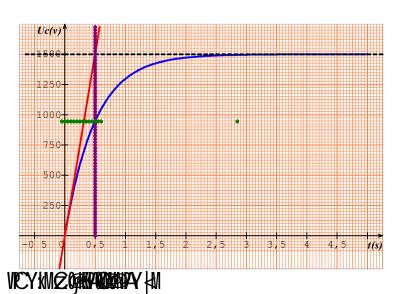
 $HCOOH;HCOO^-;H_3O^+,OH^-;Na^+;H_3O$

حساب تراكيز الافراد الكيميائية.

$$[H_3O^+] = 10^{-pH} = 1.58.10^{-4} \, mol \, / \, l$$
 $[OH^-] = 6, 3.10^{-11} \, mol \, / \, l$

$$[OH^{-}] = 6.3.10^{-11} mol / l$$

$$[Na^{+}] = \frac{C_{B}V_{B\acute{e}q/2}}{V_{a} + V_{B\acute{e}q/2}} = 0,0033mol/l$$


$$[HCOO^{-}] = [H_{3}O^{+}] + [Na^{+}] - [OH^{-}] = 3,458.10^{-3} mol/l$$

$$[HCOO^{-}] = [HCOOH] = 3,458.10^{-3} mol / l$$

التمرين الثالث:

المرحلة الأولى:

 $U_c=E$ الوثيقة (1) الن عند t=0 كان $U_c(0)=0$ ثم يتطور التوتر U_c الى أن يأخذ قيمته العظمى $U_c=E$

(1) غسب قيمة τ_1 من الوثيقة τ_2

 $t = \tau_1$ عند یکون عند $U_c(\tau_1)$ حیث یکون غد $U_c(\tau_1) = 0.63E$ $\tau_1 = 0.5s$

ط2 رسم الماس عندد t=0 كما هومبين على البيان. 3. الطاقة المخزنة في المكثفة:

$$E_C = \frac{1}{2}CU_C^2 = 528,75$$
 joule

4. حساب مدة الشحن Δt عندما يصبح التوتر بين طرفي المكثفة 0,97E

$$\begin{split} U_c &= E\left(1 - e^{-\frac{t}{\tau_1}}\right) \\ U_c\left(\Delta t\right) &= E\left(1 - e^{-\frac{\Delta t}{\tau_1}}\right) \Leftrightarrow 0,97E = E\left(1 - e^{-\frac{\Delta t}{\tau_1}}\right) \\ 0,03 &= e^{-\frac{\Delta t}{\tau_1}} \Rightarrow lin\left(0,03\right) = -\frac{\Delta t}{\tau_1} \Leftrightarrow \Delta t = 3.5\tau_1 \\ U_c &= 0.99^{\rm E}$$
 نلاحظ أن $\tau > 0.99^{\rm E}$ وتكون في حدود $\tau > 0.99^{\rm E}$ من أجل $\tau < 0.99^{\rm E}$ للرحلة الثانية:

المرحلة الثانية:
$$t=0, U_c(0)=E \Rightarrow A=E=1500V \qquad U_c=Ae^{-\frac{t}{RC}} \qquad .1$$

$$RC=50.470.10^{-6}=23,5ms$$

$$i(t) = \frac{dq(t)}{dt} \quad .2$$

$$U_c(t) = \frac{q(t)}{C} \quad .3$$

$$i(0) = \frac{E}{R} = I_0 \Rightarrow B = \frac{E}{R} \qquad i(t) = B e^{-\frac{t}{\tau_2}}$$

5. اللحظة التى تكون فيها شدة التيار أعظمية عند t=0 ، t=0 وهي لاتتعلق بسعة المكثفة.

الم حلة الثالثة:

تتوقف عملية التقريغ عندما تتحر طاقة E_c=400 i

تحديد اللحظة إلى الموافقة:

$$E_C(t_1) = 400 = \frac{1}{2}CU_C^2 \Rightarrow U_C^2 = \frac{2x\,400}{470.10^{-6}} = 1,70.10^6$$

$$U_C = \sqrt{1,70.10^6} = 1304 V$$

حساب قيمة التوتر بين طرفي المكثفة عند هذه اللحظة

$$U_c(t_1) = Ee^{-\frac{t_1}{RC}} \Rightarrow U_c(t_1) = 1500e^{-\frac{3.5.10^{-3}}{23,5.10^{-3}}} = \approx 1300 \ V$$

