المجال: التطورات الرتيبة - الوحدة :1 تطور كميات المادة للمتفاعلات والنواتج في محلول مائي خلال تحول كيميائي سلسلة تمارين-الوحدة الأولى ثانوية العربي بن مستورة _زعرورة-تيارت-2014 الأستاذ: خيرات مخلوف بتصرف

التمرين 1: المتابعة عن طريق المعايرة

ا محلول ماء الأكسجيني $(\mathrm{H}_2\mathrm{O}_2)$ تركيزه $\mathrm{H}_2\mathrm{O}_1$ H_0 ، تم تمد يـد ه $\mathrm{H}_2\mathrm{O}_2$ ، الحجم $\mathrm{H}_2\mathrm{O}_2$

من المحلول الممدد للماء الأكسجيني تركيزه ($m C_1$) و نعايره بوجود حمض الكبريت ، بواسطة محلول برمنغنات $m V_1$ = m 20~mL $m V_{2}$ البوتاسيوم ($m KMnO_{4}$) تركيزه m ML $m C_{2}=0.02~mol$. نحصل على نقطة التكافؤ بعد إضافة حجم

من محلول (KMn0₄). المعادلة المنمذجة للتحول الحادث هي :

 $2MnO_{-4\,(aq)} + 5H_2O_{\,2\,(aq)} + 6H_{\,\,(aq)}^{\,\,+} = 2\,Mn^{\,2\,+}_{\,\,(aq)} + 5\,O_{\,2\,(aq)} + \,8\,H_{\,2}O_{\,(aq\,)}$

1- حدد الثنائيتين (ox / red) الداخلتين في التفاعل بعد كتابة المعادلتين النصفيتين الالكترونيتين.

2- أنجز جدول التقدم لهذا التفاعل.

 $.V_2 \cdot V_1 \cdot C_2$ بدلالة $.V_2 \cdot V_1 \cdot C_2$ اكتب عبارة الم

 \cdot F ، ثم استنتج معامل التمديد \cdot C ، د احسب

II- الماء الأكسجيني يتفكك ببط ء شديد ، معادلة هذا التفاعل هي :

 $2 H_2 O_{2 (aq)} = O_{2 (g)} + 2 H_2 O_{(1)}$

إن إضافة محلول كلور الحديد الثلاثي يسرع التفاعل. عند اللحظة

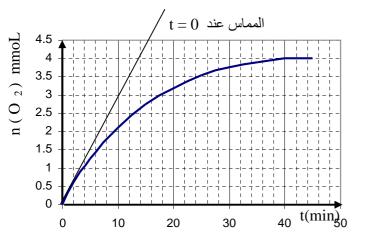
نمزج حجم $V_0 = 80 \text{ mL}$ نمزج حجم t = 0 s

تركيزه \mathbf{C}_0 ، مع حجم $\mathbf{V} = \mathbf{20} \; \mathbf{mL}$ من محلول كلور الحديد الثلاثي

. $n(O_2) = f(t)$ البيان المجاور يبين تطور كمية ثنائي الأكسجين

1- أنجز جدول التقدم لهذا التفاعل.

 (O_2) استنتج العلاقة الموجودة بين تقدم التفاعل وكمية مادة O_2


3- احسب التقدم النهائي للتفاعل.

4- عرف زمن نصف التفاعل ، وحدد قيمته .

5- اكتب عبارة سرعة التفاعل عند اللحظة (t).

(t=0) احسب هذه السرعة عند اللحظة -6

7 - اذكر العوامل الحركية في هذا التحول.

التمرين 2: المتابعة عن طريق المعايرة

الماء الأكسيجيني $O_2 H_2$ يتفكك ذاتيا وببطء ، لذا يحفظ في قارورات خاصة.

نريد متابعة تطور التفكك الذاتي للماء الأكسيجيني بواسطة المعايرة فتكون طريقة العمل التالية:

10ml نأخذ 100ml من الماء الأكسيجيني ونضعه في بيشر ونضيف إليه كمية من محلول كلور الحديد الثلاثي وبعد كل مدة زمنية نأخذ $KMnO_4$ من المزيج ونسكبه في بيشر يحتوي على 50ml من ماء شديد البرودة ، ثم نعاير محتوى البيشر بمحلول برمنغنات البوتاسيوم الموجود بالسحاحة ذو التركيز $C_{ii}=15mol/l$ ونسجل الحجم المضاف عند التكافؤ Ve في كل مرة. ندون النتائج في الجدول التالي:

t(min)	0	3,8	6,5	9,5	12,25	15,2	17,5
Ve(ml)	12,30	7,80	5,70	4,00	2,90	2,00	1,55
$n_{H_2O_2}$							

 $2H_2O_{2(aq)} o O_{2(g)} + 2H_2O_{(l)}$ معادلة التفكك الذاتي للماء الأكسيجيني lacktriangle

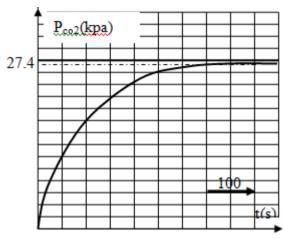
حدد الثنائيتين (ox/red) المشاركتين في التفاعل.

② ما دور محلول كلور الحديد الثلاثى وهل يتدخل في التفاعل؟

② كيف نتعرف على نقطة التكافؤ أثناء المعايرة.

الماء البارد وهل يغير من كمية المادة؟

 (MnO_4^{-}/Mn^{2+}) هما المعادلة الإجمالية لتفاعل المعايرة علما أن الثنائيتين المشاركتين في التفاعل هما (MnO_4^{-}/Mn^{2+}) $.(O_{2}/H_{2}O_{2})$


ه عبر عن الكمية $n(H_2O_2)(t)$ بدلالة C_{tit} عبر عن الكمية عبر $n(H_2O_2)(t)$ بدلالة $n(H_2O_2)(t)$

t=0 ارسم البيان $H_2O_2=f(t)$ وأوجد سرعة اختفاء و $H_2O_2=f(t)$ عند اللّحظة $n(H_2O_2)=f(t)$

التمرين3: المتابعة عن طريق قياس الضغط

في بالون حجمه يقارب 1~L نسكب V=60~m من محلول حمض الايتانويك تركيزه

من هيدروجينوكربونات الصوديوم $m NaHCO_{3(s)}$ و ندخل فيه بسرعة كتلة m m=1.25~g من هيدروجينوكربونات الصوديوم $m C=1.00~mol.l^{-1}$ بواسطة سدادة مزودة بأنبوب موصول إلى جهاز يمكنه التقاط الضغط التفاضلي للغاز المنطلق يتفاعل حمض الايتانويك مع هيدروجينوكربونات الصوديوم وفق المعادلة

 ${
m CH_3COOH_{(aq)} + HCO_3^-}_{(aq)} = {
m CO}_{2(g)} + {
m CH}_3{
m COO}^-_{(aq)} + {
m H}_2{
m O}_{(1)}$ ite is ited also in the constant of the constant

1 - هل التحول بطئ أم سريع ؟

 ${
m CO}_2$ عين باستعمال البيان كمية المادة ${
m n}_{\rm f}$ من غاز ${
m CO}_2$ المنطلقة في نهاية التجرية علما أن التجرية تمت عند درجة

V=1.35~L وحجم البالون $T=298~K^{\circ}$ حرارة قدرها

(PV = nRT: القانون العام للغازات)

3- أحسب كمية مادة المتفاعلات في الحالة الابتدائية.

4- أعط جدول تقدم التفاعل ، و استنتج التقدم الاعظمى و المتفاعل المحد .

5- استنتج كمية مادة ${
m CO}_2$ النظرية المتحررة في نهاية التجربة . قارنها مع القيمة المعينة باستعمال البيان ماذا تستنتج ؟

 $_{6}$ - أحسب سرعة التفاعل عند اللحظّة $_{5}$ $_{100}$ ، كيف تتطور السرعة خلال هذا التحول ؟

يعطى: R = 8.32 S I ، يعطى: " Kpa = 1000pa ، M(NaHCO₃) = 84 g/mol ، R = 8.32 S I

التمرين 4 : عن طريق قياس الحجم في حالة غاز

m m نضع في كأس بيشر حجما m C=1 mol/L من محلول حمض الآزوت ($m H^+ + NO_3$) تركيزه المولي m V=100 mL من محلول حمض الآزوت (m Cu) من النحاس (m Cu).

 (NO_3^-/NO) و (Cu^{+2}/Cu) هما (Cu^{+2}/Cu) و (NO_3^-/NO) و (NO_3^-/NO)

أ/- بين أن المعادلة المعبرة عن التفاعل المنمذج للتّحول السابق هي:

 $3 Cu_{(s)} + 2 NO_{3 (aq)} + 8 H^{+}_{(aq)} \longrightarrow 3 Cu^{2+}_{(aq)} + 2 NO_{(g)} + 4 H_2O_{(L)}$

ب/- احسب كمية المادة الابتدائية للمتفاعلات.

ج/- أنشئ جدول تقدم التفاعل المنمذج للتحول السابق.

د/- حدد المتفاعل المحد.

 $m P=10^5~pa$ التجربة أجريت في درجة الحرارة $m 25^0c$ وتحت الضغط m 2-2

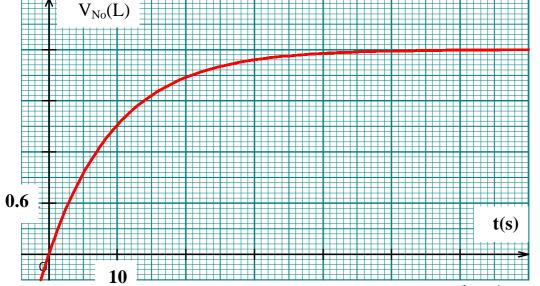
 $m V_{M}$ =24 m L في شروط التجربة هو أر- بين أن الحجم المولي للغازات في شروط التجربة

ب/- اوجد العلاقة بين حجم غاز أكسيد الازوت ($m V_{NO}$) المنطلق والتقدم (m x

3/- يعطى الشكل المرافق تغير حجم غاز أكسيد الازوت V_{NO} بدلالة الزمن

أ/- عرف سرعة التفاعل

واحسب قيمتها


في اللحظة t= 20 s

ب/- استنتج التركيب المولي

t = 30 s للمزيج في اللحظة

 $\sigma(t)$ أعط عبارة الناقلية النوعية /4

للمحلول بدلالة التقدم (x)

يعطى: : قانون الغازات $PV_{(G)} = n_G RT$: $PV_{(G)} = n_G RT$: $R = 8.31 j^{\circ} K^{-1} MoL^{-1}$ M(Cu) = 64 g/moL $\lambda_{H}^{+} = 35 \text{ ms m}^{2}/moL$ $\lambda_{NO3}^{-} = 7.14 \text{ ms m}^{2}/moL$ $\lambda_{Cu}^{2+} = 10.4 \text{ms m}^{2}/moL$

التمرين5: المتابعة عن طريق قياس الحجم في حالة غاز

t=0 لدراسة التحول الكيميائي بين معدن الزنك Zn و محلول حمض كلور الماء $H_3O^+_{(aq)}+C\Gamma_{(aq)}+C\Gamma_{(aq)}$ وضع أحد التلاميذ في اللحظة m=0.7~g كتلة m=0.7~g

m V=80~mL من محلول حمض كلور الماء تركيزه المولي m C=0.5mol/L ، و لمتابعة تطور التفاعل الكيميائي الحادث قام بقياس حجم غاز ثنائي الهيدروجين المنطلق $m V_{(H2)}$ في الشروط التجريبية حيث الحجم المولي $m V_{M}=25~L~/mol$ فتحصل على الجدول التالي :

t (s)	0	50	100	150	200	250	300	400	500
V_{H2} (mL)	0	36	64	86	104	120	132	154	170
Zn^{2+} mol/L									

 Zn^{2+} (aq) / $Zn_{(s)}$: اكتب معادلة التفاعل الكيميائي الحادث بين الثنائيتين -1 $H_3O^{+}_{(aq)}/H_{2(g)}$

2 - مثل جدولا لتقدم التفاعل.

 $m V(H_2)~;~V_M~;~V_S~;~V_M~;~V_S~;~V_M~;~V_S~;~V_M~;~V_S~;~V_M~;~V_S~;~V_M$

 z^{-1} - أرسم المنحنى البيانى: $z^{-1} = f(t) = [z^{-1}]$ باستعمال سلم رسم مناسب

 $\mathbf{X}_{ ext{max}}$ للتفاعل المحد و قيمة التقدم الأعظمى للتفاعل $\mathbf{X}_{ ext{max}}$.

6- هل نعتبر التفاعل منتهيا عند T=500 S علل؟.

 $t_{1/2}$ استنتج من البيان: أ/زمن نصف التفاعل $t_{1/2}$

 $t_1 = 100 \mathrm{s}$ ب / سرعة تشكل ثنائي الهيدروجين عند اللحظة يعطى : Zn = 65.4 g /mol

التمرين 6: المتابعة عن طريق الناقلية

النوع الكيميائى: 2- كلور 2- مثيل بروبان يتميه حسب المعادلة التالية:

 $(CH_3)_3C-CL + 2H_2O = (CH_3)_3C-OH + H_3O^+_{(aq)} + CL^-_{(aq)}$

نتابع التطور الزمني لهذا التحويل بطريقة قياس الناقلية . لذا نتخل في بيشر $m V_1 = 20~mL$ من محلول 2- كلور 2- مثيل بروبان تركيزه المولي : $m C_1=0.10 \ mol/L$ و مزيج يتكون من (ماءm + acétone) حجمه $m V_2=80 \ mb$. نوصل جهاز الناقلية بشكل مناسب و بعد القياس و إجراء الحساب نحصل على النتائج التالية:

Ī	T(s)	0	30	60	80	100	120	150	200
	σ (S/m)	0	0.246	0.412	0.502	0.577	0.627	0.688	0760

1- اشرح لماذا يمكن متابعة هذا التحول عن طريق قياس الناقلية.

2- شكل جدول تقدم التفاعل.

 $\sigma = 426 x$: لستنتج أن عبارة الناقلية النوعية σ بدلالة التقدم σ للتفاعل هي

 $_{f X}$ - شكل جدول يعطي قيمة التقدم $_{f X}$ للتفاعل بدلالة الزمن

بين ذلك. $t=200~{
m s}$ عند اللحظة $t=200~{
m s}$

 $\mathbf{x} = \mathbf{f}(\mathbf{t})$ أرسم البيان -6

 $t = 50 \, \mathrm{s}$ عند اللحظة x = f(t) . x = f(t) من المنحنى

* قيمة زمن نصف التفاعل.

 $\lambda({
m CI})$ ، λ (${
m H_3O^+}$) من دون الاستعانة معرفة قيمة مكن كتابة العلاقة بين σ و $_{
m X}$ من دون الاستعانة معرفة قيمة مكن كتابة العلاقة بين λ (Cl)=7.6. 10⁻³ S.m². mol⁻¹

 $\lambda(H_3O^+)=35.\ 10^{-3}\ S.m^2.\ mol^{-1}$: يعطى

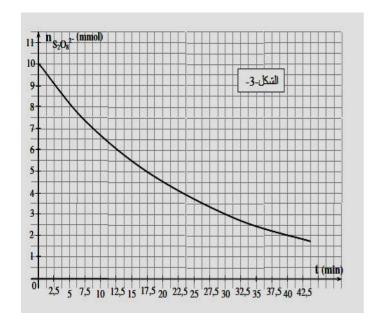
التمرين 7: - نريد دراسة تطور التحول الكيميائي الحاصل بين شوارد محلول $\left(2K_{(aq)}^{+}+S_{2}O_{8-(aq)}^{2-}
ight)$ لبيروكسوديكبريتات البوتاسيوم $\left(S_{1}
ight)$ $\left(K^{+}_{(aq)}+I^{-}_{(aq)}
ight)$ و شوارد محلول $\left(S_{\gamma}
ight)$ ليود البوتاسيوم t=0 في درجة حرارة ثابتة . لهذا الغرض نمزج في اللحظة حجما $V_1 = 50m$ من المحلول (S_1) تركيزه المولى $V_2 = 50mL$ مع حجم $C_1 = 2.0 \times 10^{-1} \, mol \, / \, L$. $C_2 = 1,0 mol/L$ من المحلول (S_2) تركيزه المولي نتابع تغيرات كمية مادة $S_2 O_8^{2-}$ المتبقية في الوسط التفاعلي في لحظات زمنية مختلفة ، فنحصل على البيان الموضح . الشكل-3:

 $2 \ddot{I}^{-}{}_{(aq)} + S_2 O_8^{2-}{}_{(aq)} = I_{2(aq)} + 2 S O_4^{2-}{}_{(aq)}$

1- حدد الثنائيتين ox/red المشاركتين في التفاعل.

ننمذج التحول الكيميائي الحاصل بالتفاعل الذي معادلته:

2- أنشئ جدولا لتقدم التفاعل.


3- حدد المتفاعل المحد.

4- عرف زمن التفاعل $(t_{1/2})$ واستنتج قيمته بيانيا .

5- أوجد التراكيز المولية للأنواع الكيميائية المتواجدة في الوسط التفاعلي عند اللحظة. t = 10 min

ومب سرعة اختفاء $S_2O_0^{2-}$ عند t=10 min. عند التفاعل؟.

ندرس حركية الاماهة القاعدية لأستر ميثانوات الاثيل بقياس الناقلية لخليط مثانوات الاثيل و محلول هيدروكسيد الصوديوم (Na++OH-) بدلالة الزمن نسكب في كأس ببشر محلول هيدروكسيد الصوديوم تركيزه $m C_0=1.0.10^{-2}~c_0=1.0.10^{-2}$. نغمر خلية قياس الناقليةُ في المحلول و

نحرك الخلاط. نقيس الناقلية الابتدائية G_0 في لحظة نعتبرها t_0 . نضيف بعد دلك و بسرعة ميثانوات الاثيل بكمية مساوية لكمية هيدروكسيد الصوديوم الابتدائية. نقيس ناقليه المحلول بدلالة الزمن فنحصل على الجدول الآتي فيه قيم الناقلية G و التقدم X.

t (mn)	0	3	6	9	12	15	45	نهاية التفاعل
G(ms)	?	2.16	1.97	1.84	1.75	1.68	1.20	1.05
x(mmol)	0	0.46	0.72	0.90	1.00	1.10	1.70	2.00

 $HCO_2C_2H_5$ aq + HO $aq = HCO_2$ $aq + CH_3CH_2OH_{aq}$. المعطيات معادلة التفاعل

فى لحظة زمنية (t) تعطى عبارة الناقلية (G) للخليط بالعلاقة.

و مي الناقلية المولية الشاردية . و $K = S/L = 0.010 \, \text{m}$ حيث $G(t) = K \{ \lambda_{Na+} [Na^+] + \lambda_{HO}^- [HO^-] + \lambda_{HCOO}^- [HCOO^-] \}$ قيمها عند $^2 5.46.10^{-3} \, \text{s.m}^2.\text{mol}^{-1}$. $\lambda_{HO^-} = 19.9.10^{-3} \, \text{s.m}^2 \, \text{mol}^{-1}$. $\lambda_{Na+} = 5.01 \cdot 10^{-3} \, \text{s.m}^2.\text{mol}^{-1}$. $\lambda_{HO^-} = 19.9.10^{-3} \, \text{s.m}^2.\text{mol}^{-1}$. $\lambda_{Na+} = 5.01 \cdot 10^{-3} \, \text{s.m}^2.\text{mol}^{-1}$. $\lambda_{HO^-} = 19.9.10^{-3} \, \text{s.m}^2.$

... H_3O^+ يهمل وجود $C_b = 1.10^{-2} \text{ mol/l}$

t=0 أعط تركيز الشوارد في هذا المحلول V عند هذه اللحظة t=0 أعط تركيز الشوارد في هذا المحلول عند هذه اللحظة ..

 $\mathbf{G}_0=(\mathbf{K}/\mathbf{v})$ $\mathbf{n}_0\{\lambda_{\mathrm{Na+}}+\lambda_{\mathrm{HO}}^-\}$ يمكن أن تكتب : $\mathbf{G}_0=\mathbf{G}_0=(\mathbf{K}/\mathbf{v})$ $\mathbf{n}_0\{\lambda_{\mathrm{Na+}}+\lambda_{\mathrm{HO}}^-\}$ عدد مولات الاستر و هيدروكسيد الصوديوم. أحسب قيمة \mathbf{G}_0 استعمل الوحدات الدولية.

3- نر مز ب x لتقدم التفاعل في اللحظة t أكمل الجدول الآتي مبينا كمية المادة بدلالة x .

V 28	٠		١ ٠٠ پ	A 1 3 3 0
المعادلة	HCO ₂ C ₂ H ₅	OH.	HCO ₂	C ₂ H ₅ OH
ح ابتدائية	n ₀	n ₀	0	0
ح انتقالية			X	

1- ندرس ناقليه الخليط بدلالة الزمن: بين أن ناقليه الخليط يمكن كتابتها بدلالة x . وفق العلاقة .

*..... $G = K/v \{\lambda_{Na+}(n_0) + \lambda_{HO}(n-x) + \lambda_{HCOO}(x)\}$

بسط العبارة السابقة و ضع $G = a \times b$ على الشكل $G = a \times b$ حيث $a \in a$ ثابتين يطلب تعيينهما ..

ما المقدار الذي يعبر عنه b . ما أشارة a . ما شكل البيان G = f(x) ...

x = g(t) المعلاقة (*) تسمح بقياس التقدم (x) في الجدول الأول . أرسم البيان

1cm......3min

5-أعط تعريف السرعة الحجمية للتفاعل و بين أنه يمكن تحديدها في لحظة (t) . كيف تتغير سرعة التفاعل المدروس .

6- عرف زمن نصف التفاعل أعط قيمته بيانيا...

التمرين 9:

ينمذج التحول الكيميائي الذي يحدث بين شوارد البيروكسوديكبريتات ($S_2O_8^{2-}$)وشوارد اليود (I^-) في الوسط المائي بتفاعل تام معادلته: $2I^-(aq) + S_2O_8^{2-}(aq) = I_2(aq) + 2SO_4^{2-}(aq)$

لدراسة تطور هذا التفاعل في درجة حرارة ثابتة $0^{\circ}=0$ بدلالة الزمن ، نمزج في اللحظة (t=0)حجما $v_1=100$ ml من محلول مائي لدراسة تطور هذا التفاعل في درجة حرارة ثابتة $0^{\circ}=0$ بدلالة الزمن ، نمزج في اللحظة ($0^{\circ}=0$ من محلول مائي ليود البوتاسيوم تركيزه المولي $0^{\circ}=0$ المولي ا $0^{\circ}=0$ مع حجم $0^{\circ}=0$ مع حجم المولي ا $0^{\circ}=0$ فنحصل على مزيج حجمه $0^{\circ}=0$ مع حجمه $0^{\circ}=0$ فنحصل على مزيج حجمه $0^{\circ}=0$ المولي المولي $0^{\circ}=0$ فنحصل على مزيج حجمه $0^{\circ}=0$ بندود البوتاسيوم تركيزه المولي المولي

- 1- عين كل من الثنائيتين المؤكسدة والمرجعة واكتب المعادلتين النصفيتين للأكسدة و الإرجاع.
 - 2- أنشئ جدول تقدم التفاعل الحاصل.
- $[S_2O_8^{2-1}]$ و $[S_2O_8^{2-1}]$ البيروكسوديكبريتات في المزيج خلال التفاعل بدلالة : V_1 . V_2 و $[S_2O_8^{2-1}]$ التركيز المولى لثنائي اليود $[S_2O_8^{2-1}]$ التركيز المولى لثنائي اليود $[S_2O_8^{2-1}]$ التركيز المولى لثنائي اليود $[S_2O_8^{2-1}]$
 - 4- أحسب قيمة $[S_2^2O_8^2]$ التركيز المولي لشوارد البيروكسوديكبريتات في اللحظة $[S_2O_8^2]$ الحظة إنطلاق التفاعل

 $\mathbf{S_2O_8}^2$ و شوارد $\mathbf{S_2O_8}^2$ بین شوارد

- 5- لمتابعة التركيز المولي لثنائي اليود المتشكل بدلالة الزمن نأخذ في أزمنة مختلفة $t_1.t_2.t_3.t_4...$ عينات من المزيج حجم كل عينة $v_0=10$ ونبردها مباشرة بالماء البارد والجليد وبعدها تعاير ثنائي اليود المتشكل خلال المدة t_i بواسطة محلول مائي عينة $v_0=10$ الصوديوم $v_0=10$ تركيزه المولي $v_0=10$ المولي $v_0=10$ وفي كل مرة نسجل $v_0=10$ حجم محلول ثيوكبريتات الصوديوم اللازم لاختفاء ثنائي اليود فنحصل على جدول القياسات التالى:
 - أ ـ لماذا تبرد العينات مباشرة بعد فصلها عن المزيج ؟ ب في تفاعل المعايرة تتدخل الثنائيتان:

 $I_{2(aq)}/I^{-}_{(aq)}$ و $S_4O_6^{2-}(aq)$ $S_2O_3^{2-}(aq)$ أكتب المعادلة الإجمالية لتفاعل الأكسدة $_{-}$ ارجاع الحاصل بين الثنانيتين .

60 t(min) 10 15 20 30 13.1 15.3 v'(ml) 0 4.0 6.7 8.7 10.4 16.7 $[I_2](mmol/L)$

> بين مستعينا بجدول التقدم لتفاعل المعايرة ان التركيز المولي لثنائي اليود في العينة عند نقطة التكافق يعطي بالعلاقة:

- د- أكمل جدول القياسات
- $I_2 = f(t)$: البيان الملى متري البيان الورق الملى متري البيان
- و- أحسب بيانيا السرعة الحجمية للتفاعل في اللحظة t=20min

 $[I_2] = \frac{1}{2V_0}C V$