س د 2014/13

السلسلة رقم 03: تمارين الدوال الأسية في البكالوريا

إعداد الأستاذ: بالعبيدي م العربي

لشعب : 3 علوم . ت+رياضيات + تقني رياضي

بكالوريات شعبة علوم تجريبية

ورة 2013

$$f(x) = \frac{x}{x-1} + e^{\frac{1}{x-1}}$$
 الدالة المعرفة على $f(x) = \frac{x}{x-1} + e^{\frac{1}{x-1}}$ الدالة المعرفة المع

و (
$$C$$
) تمثيلها البياني في المستوي المنسوب إلى معلم متعامد ومتجانس $\left(\vec{0}, \vec{i}, \vec{j} \right)$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} f(x)$$

$$(C\)$$
 استنتج المستقيمين المقاربين لـ

احسب
$$f'(x)$$
 بيّن أن الدالة f متناقصة تماما على $f'(x)$

المجال
$$]1;\infty - [$$
 ثم شكل جدول تغير اتها.

(3) بيّن أن المعادلة
$$f(x) = 0$$
 تقبل حلا وحيدا α باستعمال الجدول أعلاه ثم جد حصر اللعدد α

ارسم المستقيمين المقاربين والمنحنى (
$$(C)$$
)،ثم أرسم

f(x)

0,037

0.016

-0.005

-0.026

-0,048

-0.070

0.20

0.21

0,22

0.23

0,24

0.25

المنحنى ('C) الممثل للدالة |f|.

حلان مختلفان في الإشارة.
$$|f(x)| = m$$

$$g(x) = f(2x-1) : -]-\infty;1$$

ادرس تغیرات الدالة g على 1

 $]-\infty;1$ المجال

ثم شكل جدول تغيراتها

$$g'(\frac{\alpha+1}{2}) = 2f'(\alpha)$$
 ثم بیّن أن $g(\frac{\alpha+1}{2}) = 0$ ثم بیّن أن (أ-2

ب)استنتج معادلة (T) المماس لمنحنى الدالة g في النقطة

 $\frac{\alpha+1}{2}$ ذات الفاصلة

(T) معادلة للمستقيم
$$y = \frac{2}{(\alpha - 1)^3} x - \frac{\alpha + 1}{(\alpha - 1)^3}$$
 جـ)تحقق من أن:

دورة2012

- $g(x) = 1 xe^x$: لتكن و الدالة المعرّفة على الدالة المعرّفة (I
 - $\lim_{x\to +\infty} g(x)$ وَ $\lim_{x\to -\infty} g(x)$ احسب (1
- 2) أدرس اتجاه تغير الدالة g ،ثم شكل جدول تغير اتها.
- $\alpha \in [-1; +\infty[$ أُ-بيّن أن المعادلة g(x) = 0 تقبل حلاو حيدا أُ
 - \mathbb{R} ب-تحقق أن: 0.6 $\prec lpha$ $\prec 0.6$ أستنتج إشارة
 - نعتبر الدالة f المعرفة على المجال [2] كما يلي: $f(x) = (x-1)e^x x-1$

. $\lim_{x \to \infty} f(x)$ احسب (1

$$x$$
 لتكن ' f مشتقة الدالة f بين أنه من أجل كل عدد حقيقي (2 من f أفإن: $f'(x) = -g(x)$.

أستنتج إشارة
$$f'(x)$$
 على $]-\infty;2$ على إشارة $[x]$

بيّن أن
$$f(\alpha) = -\left(\frac{\alpha^2+1}{\alpha}\right)$$
 ، ثم استنتج حصر اللعدد (3

$$f(\alpha)$$
. (تدور النتائج إلى 10-2).

$$y=-x-1$$
 هو $y=-x-1$ هو المعادلة $y=-x-1$ هو مستقيم مقارب مائل للمنحنى $y=-x-1$ بجوار $y=-x-1$

$$(\Delta)$$
 بالنسبة إلى (Δ) بالنسبة إلى بالنسبة إلى الم

ين أن المعادلة
$$f(x) = 0$$
 تقبل حلين x_1 و x_2 حيث:

$$.1,5 \prec x_2 \prec 1,6$$
 $\[\circ \] -1,6 \prec x_1 \prec -1,5 \]$

$$(C_{\scriptscriptstyle \mathrm{f}})$$
 ب-أنشى (Δ) و

دورة 2011

 $f(x) = e^x - ex - 1$ نعتبر الدالة العددية fالمعرفة على \mathbb{R} ب: $f(x) = e^x - ex - 1$ و ر $f(c_f)$ تمثيلها البياني في المستوي المنسوب إلى معلم

 $\left(0,\vec{i},\vec{j}\right)$ متعامدومتجانس

. $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ ا -أ- احسب ا $\lim_{x \to -\infty} f(x)$

ب-احسب (x)' f ثم ادرس اشارتها.

ج-شكّل جدول تغيرات الدالة f.

y=-ex-1 -أ-بيّن أن المستقيم (Δ) ذو المعادلة : y=-ex-1 مقارب مائل للمنحنى ($C_{_{\mathrm{f}}}$) بجوار (∞ –).

ب- أكتب معادلة للمستقيم (T) مماس المنحنى $(C_{\rm f})$ في النقطة ذات الفاصلة 0 .

[1,75;1,76] تقبل في المجال [0,75;1,76;1,75] عبين أن المعادلة [0,1,75;1,76] عبد وحيدا [0,1,75;1,76]

 $]-\infty;2[$ المجال کے المجال ($C_{_{\mathrm{f}}})$ ثم ($C_{_{\mathrm{f}}}$) نم د-أرسم المستقيمين (Δ) نم (Δ)

دورة2010

: بالدالة f المعرفة على المجال \mathbb{R}^* ب

يرمز
$$(\mathbf{C}_{\mathrm{f}})$$
 إلى تمثيلها البياني في معلم $\mathbf{f}(\mathbf{x}) = \mathbf{x} - \frac{1}{\mathrm{e}^{\mathrm{x}} - 1}$

متعامد و متجانس
$$\left(0, \tilde{i}, \tilde{j}\right)$$
 .

$$\lim_{x\to +\infty} f(x)$$
 و $\lim_{x\to -\infty} f(x)$ احسب (1-أ)

ب) احسب
$$f(x) = \lim_{x \to 0} \int_{0}^{\infty} f(x)$$
 و فسر النتيجة هندسيا

2)أدرس اتجاه تغير الدالة f على كل مجال من مجالي تعريفها ثم شكل جدول تغير اتها.

و $\binom{C_f}{i}$ منحنى الدالة f في المستوي المنسوب إلى المعلم المتعامد و المتجانس $(C; \vec{i}; \vec{j})$ ؛ [وحدة الطول: 2cm] . $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ منائل v = x مقار ب مائل v = x مقار ب مائل

ب-بيّن أن المستقيم (Δ)ذا المعادلة y=x مقارب مائل المنحنى ($C_{\rm f}$) عند $+\infty$

 (Δ) جـأدرس وضعية المنحنى $(C_{\rm f})$ بالنسبة إلى المستقيم

. f'(x) = g(x): x عدد حقیقی عدد و اجل کل عدد حقیقی بن ان من أجل کل عدد حقیقی بن ان من أجل کل عدد و الداله f'(x) = -0.9 = -0.9

 $(C_{\rm f})$ يقبل مماسين ، معمل توجبه $(C_{\rm f})$ يقبل مماسين ، معمل توجبه كل منهما يساوي $(C_{\rm f})$ ، يطلب تعيين معادلة لكل منهما

 (C_f) والمماسين والمنحنى (Δ)

جـناقش بيانيا ، وحسب قيم الوسيطُ الحقيقي m ، عدد و إشار ة حلول المعادلة ذات المجهول $x = 0 + me^x$.

دورة 2012

 $g(x) = 2 - xe^x$ هي الدالة المعرفة على \mathbb{R} كمايلي g - I أدرس تغيرات الدالة g ، ثم شكل جدول تغيراتها.

 $0.8 < \alpha < 0.9$ ييّن أنّ المعادلة g(x) = 0تقبل حلاو حيدا α حيث ويري (2

. g(x) عين حسب قيم x ، اشارة (3

 $f(x) = \frac{2x+2}{e^x+2}$. كمايلي: \mathbb{R} كمايلي الدالة المعرفة على \mathbb{R}

و $\left(\mathbf{C}_{_{\mathrm{f}}} \right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم

. [2cm :وحدة الطول ($O; \vec{i}; \vec{j}$) المتعامد والمتجانس

بيّن أن $\lim_{x\to +\infty} f(x) = 0$ ، ثم فسّر النتيجة بيانيا.

 $\lim_{x\to\infty} f(x)$ | (2)

 $\left(\mathbf{C}_{_{\mathrm{f}}}\right)$ ب-بيّن أن المستقيم $\mathbf{y}=\mathbf{x}+1$ ذا المعادلة: $\mathbf{y}=\mathbf{x}+1$ مقارب لـ

درس وضعية $(\operatorname{C}_{_{\mathrm{f}}})$ بالنسبة إلى كل من (Δ) و (Δ) حيث (3)

y = x هو المستقيم ذو المعادلة Δ

بيّن أنه من أجل كل \mathbb{R} : $x \in \mathbb{R}$ كل $f'(x) = \frac{2g(x)}{(e^x + 2)^2}$: f أم استنتج اتجاه تغير الدالة f .

بـبيّن أن $f(\alpha) = \alpha$ ، ثم شكل جدول تغير ات الدالة f

 (C_f) أرسم (Δ) و (Δ)

6)ناقش ، بيانيا ، حسب قُيم الوسيط الحقيقي ، عدد وإشارة حلول المعادلة f(x) = f(m) .

دورة 2010

 $g(x) = (3-x)e^{x} - 3$ الدالة المعرفة على \mathbb{R} ب.

1)أدرس تغيرات الدالة g.

ين أن المعادلة g(x) = 0 تقبل حلين مختلفين أحدهما $\alpha = [2,82;2,83]$ معدوم والآخر

 (Δ) يقبن أن المنحنى (C_f) يقبل مستقيمين مقاربين مائلين (Δ) و (Δ') معادلتيهما على الترتيب: $\Delta y = x + 1$ و (Δ') و (Δ') و (Δ') و (Δ') و (Δ') .

 (C_f) بيّن أن النقطة $(0; \frac{1}{2})$ هي مركز تناظر للمنحنى (4).

ب)هل توجد مماسات لـ (C_{f}) توازي المستقيم (Δ) ؟.

 (C_f) أرسم (Δ) و (Δ) ثم المنحنى

د)ناقش بيانيا حسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة : m-1) $\mathrm{e}^{-\mathrm{x}}=m$

دورة2008

المعرفة على x المعتبر الدالة العددية للمتغير الحقيقي x المعرفة على المجال $f(x) = (ax + b)e^{-x} + 1$ كمايلي: a = a حيث a و a عددان حقيقيان. a إلى تمثيلها البياني في معلم متعامد و متجانس a .

عين قيمتي a و d بحيث تكون النقطة A(-1;1) تنتمي إلى عين قيمتي a ومعامل توجيه المماس عند a يساوي a .

المعرفة على x المعرفة على الحقيقي المعرفة على $g(x) = (-x-1)e^{-x} + 1$ المجال $g(x) = (-x-1)e^{-x} + 1$ كمايلي: (C_g) إلى تمثيلها البياني في المعلم السابق.

 $\lim_{u\to\infty}ue^u=0$) أ)بين أن $\lim_{x\to+\infty}g(x)=1$ و فسر النتيجة بيانيا

ب)أدرس تغيرات الدالة g ، ثم أنشئ جدول تغيراتها.

جـ)بين أن (C_g) يقبل نقطة انعطاف I يطلب تعيين احداثييها د)اكتب معادلة المماس للمنحنى (C_g) عند النقطة I.

هـ) أرسم (C_g).

 $k(x) = g(x^2)$ إلدالة المعرفة المجال $-2; +\infty$ إلى الدالة k ثم شكل باستعمال مشتقة دالة مركبة ، عين اتجاه تغير الدالة k ثم شكل جدول تغير اتها.

بكالوريا شعبة الرياضيات

دورة2013

 $g(x) = 1 + (\overline{x^2 - 1})e^{-x}$ بـ: $\lim_{\substack{x \to +\infty \\ x \to +\infty}} g(x)$ عرفة على $\lim_{\substack{x \to +\infty \\ x \to -\infty}} g(x)$.

ب-أدرس اتجاه تغير الدالة g ، ثم شكل جدول تغيراتها g(x)=0 أبيّن أن المعادلة g(x)=0 تقبل حلّين في \mathbb{R} ، ثم تحقق أن أحدهما معدوم والآخر α حيث: $-0.8 \prec \alpha \prec -0.7 \prec 0.8$. α ب استنتج اشارة α) α ، حسب قيم العدد الحقيقي α .

 $f(x) = x - (x+1)^2 e^{-x}$ بـ: $f(x) = x - (x+1)^2 e^{-x}$ بـ:

x مستنتج إشارة g(x) حسب قيم g(x)

 $\begin{cases} f(x) = \frac{x^3}{e^x - 1}; x \neq 0 \\ f(0) = 0 \end{cases}$ بـ: $f = \mathbb{R}$ الدالة المعرفة على $f = \mathbb{R}$

واليكن (C_f) تمثيلها البياني

 $\mathbf{x}_{\scriptscriptstyle 0} = 0$ بين أن الدالة f قابلة للإشتقاق عند (1

Oعند (C_{f}) مماس (T) عند

 $\lim_{x\to\infty} f(x)$ ایین أن $\lim_{x\to\infty} x^3 e^{-x} = 0$ ثم جد (2)

 $f'(x) = \frac{x^2}{(e^x - 1)^2}g(x)$: فإن $x \neq 0$ فإن أنه من أجل بين أنه من أجل

ج) تحقق أن: $f(\alpha) = \alpha^2(3-\alpha)$ ، ثم عين حصر اله.

د)أنشئ جدول تغيرات f

 (C_f) النسبية لـ $f(x) + x^3$ واستنتج الوضعية النسبية لـ f(x)

 $x \rightarrow -x^3$ و (C) منحنى الدالة

بيّن أن $\lim_{x\to-\infty} [f(x)+x^3] = 0$ وفسر النتيجة هندسيا.

 $(C_{\rm f})$ أنشئ في نفس المعلم المماس (T)و المعلم المعلم ($(C_{\rm f})$

دورة2008

 $f(x) = x - 1 + \frac{4}{e^x + 1}$ دالة عددية معرفة على \mathbb{R} بـ: $f(X) = x - 1 + \frac{4}{e^x + 1}$

 $(0;ec{i},ec{j})$ واليكن $(C_{_{\mathrm{f}}})$ تمثيلها البياني في م.م.م

1) ادرس تغيرات الدالة. 1

بين ان $(extbf{C}_{_{\mathrm{f}}})$ يقبل نقط إنعطاف $_{m{\Omega}}$ و اكتب معادلة لمماس (2

 $(C_{_{\rm f}})$ عند النقطة $_{\rm 0}$. ثم بين ان $_{\rm 0}$ مركز تناظر ل $(C_{_{\rm f}})$

 $\lim_{x\to-\infty} [f(x)-(x+3)] \lim_{x\to+\infty} [f(x)-(x-1)]$

استنتج ان $(\mathbf{C}_{_{\mathrm{f}}})$ يقبل مقاربين يطلب تعيين معادلة كل منهما 4)بين ان $(\mathbf{C}_{_{\mathrm{f}}})$ يقطع محور الفواصل في نقطة وحيدة

 (C_f) ارسم f(-1) و f(1) ارسم $x_0 \in]-2,77;-2,76[$

 $g(x) = -x + 3 - \frac{4}{e^x + 1}$ دالة عددية معرفة على g(II)

واليكن $({
m C}_{_{
m g}})$ تمثيلها البياني

g(x) = f(-x) فإن x عدد حقيقي وأب أنه من أجل كل عدد عقيقي وأب أنه من أجل كل عدد الم

(g في نفس المعلم السابق (دون در اسة (C_a) انشئ (2

بكالوريات شعبة تقني رياضي

دورة 2013

 $g(x) = (x-1)e^x$ بـ: \mathbb{R} بـ الدالة المعرفة على g بـ الدالة الدالة g .

 $1+(x-1)e^x \geq 0 : x \in \mathbb{R}$ عن أنه ، من أجل كل -2

 $\begin{cases} f(x) = \frac{e^x - 1}{x}; x > 0 \\ f(0) = 1 \end{cases}$:- $[0; +\infty]$ = $[0; +\infty]$

 $[0;+\infty]$ مستمرة على $]\infty+;0$.

 $\lim_{x\to +\infty} f(x) - - - -$

 $f'(x) = \frac{1 + (x - 1)e^x}{x^2}$: $x \in [0; +\infty[$ كل كل أجل كل أ-2

ب- استنتج اتجاه تغير الدالة f، ثم شكّل جدول تغير اتها .

 $[0;+\infty[$ عدد طبیعي حیث f_n ، $n \ge 1$ عدد طبیعي حیث n -III

ب: $f_{n}(x) = \frac{e^{x}-1}{x} + n \ln x$ براني في $f_{n}(x) = \frac{e^{x}-1}{x}$

المستوي المنسوب إلى المعلم المتعامد و المتجانس ($\vec{0}; \vec{i}; \vec{j}$)

. [0;+ ∞] على المجال f_n على المجال $\lim_{x\to x} f_n(x)$ و $\lim_{x\to x} f_n(x)$.

 (C_{n+1}) و (C_n) و النسبي للمنحنيين (C_n) و (C_n) .

4-بيّن أن جميع المنحنيات تمر من نُقطة ثابتة Bيطلب تعيين

 $\alpha_{1} \in]0,3;0,4[$ من [0,3;0,4] عدد حقيقي وحيد من [0,3;0,4] بين أنه ، يوجد عدد حقيقي وحيد من

 $f_{_{1}}(lpha_{_{1}})=0$ بحیث: $f_{_{1}}(lpha_{_{1}})=0$. بین أنه من أجل كل عدد طبیعی n حیث $n\geq 1$ فإن:

ن م بر هن أنه يوجد عدد حقيقي وحيد α_n من $f_n(\alpha_1) \leq 0$

 $.f_n(\alpha_n) = 0$ المجال $\alpha_1; 1$ بحيث:

من $_{\rm X}$ من أجل كل $_{\rm X}$ من أبين أنه ، من أجل كل من

 $\frac{e^{x}-1}{x} \le e-1 :]0;1]$

 $n \ge 1$: عدد طبیعی n حیث $n \ge 1$

 $.\alpha_n \ge e^{\frac{1-e}{n}}$ نُم $\ln(\alpha_n) \ge \frac{1-e}{n}$

 (α_n) جـ جد نهاية المتتالية

دورة2012

g - g هي الدالة المعرفة على g كمايلي:

 $g(x) = -4 + (4 - 2x)e^{x}$

1)أدرس تغيرات الدالة g، شكل جدول تغيراتها.

بيّن أنّ المعادلة g(x) = 0 تقبل حلين أحدهما معدوم (2

والآخر α حيث: 1,59 $\prec \alpha \prec 1,60$

استنتج إشارة (g(x).

 $f(x) = \frac{2x-2}{e^x-2x}$:هي الدالة المعرفة على \mathbb{R} كمايلي f -II

و $(C_{_{
m f}})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(ar{i}\,;ar{i}\,;ar{i})$ ؛ $[ar{c}\,$

بيّن أن $ig(\mathrm{C_f} ig)$ يقبل عند ∞ و $\infty+$ مستقيمين مقاربين معادلاتهما على الترتيب y=0 و y=0 .

$$f'(x) = \frac{g(x)}{(e^x - 2x)^2} : x \in \mathbb{R}$$
 أ)بر هن أنه من أجل -2

. f'(x) ب)أستنتج إشارة f'(x)، ثم شكل جدول تغيرات الدالة

f(x) ، ثم أستنتج إشارة f(1) .

$$f(\alpha) = -1 + \frac{1}{\alpha - 1}$$
: أ)بيّن أن $= -3$

(10⁻² ب) استنتج حصرا للعدد $f(\alpha)$ (تدور النتائج إلى $f(\alpha)$ جـ) أرسم $f(\alpha)$.

4-ناقش بيانيا ، حسب قيم الوسيط الحقيقي m ، عدد و إشارة حلول المعادلة (m+1)(m+2)=2x-2=0

 $h(x) = [f(x)]^2$: \mathbb{R} كمايلي: $h(x) = [f(x)]^2$ هي الدالة المعرفة على h(x) أيا أحسب أشكل جدول تغير الت الدالة h(x)

دورة 2011

 $f(x) = 3 - \frac{4}{e^x + 1}$ هي الدالة المعرفة على \mathbb{R} كمايلي: f

و (C_f) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (i,j).

1-ادرس تغيرات الدالة f وعيّن المستقيمات المقاربة لـ $\binom{C_f}{C_f}$. 2-بيّن أن للمنحنى $\binom{C_f}{C_f}$ نقطة انعطاف $\binom{C_f}{C_f}$ عندها. اكتب معادلة المماس لـ $\binom{C_f}{C_f}$ عندها.

g(x) = f(x) - x المعرفة على \mathbb{R} كمايلي: g المعرفة على g أـ ادرس تغيرات الدالة g .

 α بين أن المعادلة g(x) = 0 تقبل حلا و حيدا g(x) = 0 حيث $2.7 < \alpha < 2.8$

با فسر النتيجة هندسيا. f(-x)+f(x) أحسب f(-x)

f(x) = 0 أحل في \mathbb{R} المعادلة.

ب- ارسم المماس و المستقيم الذي معادلته y=x و y=x . انطلاقا من المنحنى y=x استنتج المنحنى y=x الممثل -6

 $h(x) = \frac{4e^{x+1}}{e^{x+1} + 1}$ المعرفة كمايلي: h

دورة 2010

 $f(x) = \frac{3xe^x - 3x - 4}{3(e^x - 1)}$ الدالة المعرفة على \mathbb{R}^* كمايلي: f

و (C_f) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(\vec{i};\vec{i})$.

1-عيّن العددين الحقيقيين a و b بحيث:

$$x \in \mathbb{R}^*$$
من اجل کل عدد حقیقی $f(x) = ax + \frac{b}{3(e^x - 1)}$

2-احسب نهايات الدالة fعند اطراف مجالات تعريفها.

f متزایدة تماما علی کا مجال من مجالی تعریفها ثم شکل جدول تغیر اتها.

المستقيمان اللذان معادلتاهما على الترتيب (D') و (D) المستقيمان اللذان

$$\left(C_{_{\mathrm{f}}}\right)$$
و $y=x+\frac{4}{3}$ و $y=x$ و $y=x+\frac{4}{3}$

ثم حدد وضعيته بالنسبة لكل منهما.

ب) بيّن أن المعادلة f(x) = 0 تقبل حلين x_0 و x_1 حيث:

 $.-1,66 \prec x_{_{1}} \prec -1,65$ و $0,9 \prec x_{_{0}} \prec 0,91$

ج) أحسب من أجل كل عدد حقيقي x غير معدوم

ثم فسّر النتيجة هندسيا. f(-x) + f(x)

 (C_{f}) و (D') و (D) د) أرسم

y = x + m عدد حقيقي، (D_m) المستقيم المعرّف بالمعادلة m - 5 ناقش بيانيا حسب قيم m عدد حلول المعادلة: $m = g(x) = [f(x)]^2$ بـ: $[g(x) = [f(x)]^2]$ عدد حلول المجال أ

g(x) بدلالة و دون حساب الدالة و دورة g(x) بدلالة دورة 2009

 $f(x) = x + \frac{2}{1 + e^x}$ إلدالة المعرفة على \mathbb{R} ب:

و (C_f) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(\vec{i};\vec{i})$.

ا- أحسب f(x)+f(x)و ماذا تستنتج ؟.

استنتج $[0;+\infty[$ على المجال $]0;+\infty[$ ثم استنتج جدول تغير اتها على \mathbb{R} .

 $\left(C_{_{\mathrm{f}}}\right)$ هو مستقيم مقارب للمنحنى y=x هو مستقيم مقارب المستقيم y=x

التيجة هندسيا. $\lim_{x \to \infty} [f(x) - (x+2)]$ التيجة الدسيا.

 $-1.7 \prec \alpha \prec -1.6$: وحيد α حيث أنّ المعادلة α وحيد α وحيد α

ين أن المنحنى $(\mathrm{C}_{_{\mathrm{f}}})$ يقبل نقطة انعطاف $_{\mathrm{G}}$ يطلب تعيينها-

بيّن أن المنحنى $\left(\mathbf{C}_{\mathrm{f}}\right)$ يقع في شريط حداه المستقيمان -7

 $(C_{_{\mathrm{f}}})$ المقاربا ثم ارسم المنحنى

اشرح كيفية الحصول على رسم (C_f) اشرح كيفية الحصول على رسم المنحنى g(x)=f(|x|) الممثل للدالة g(x)=f(|x|)

 (C_g) ارسم عندئذ المنحنى

larbibelabidi @ gmail.com الأستاذ: ب م العربي