بسط العبارات التالية

A =
$$ln(2 + \sqrt{5})^2 + ln(2 - \sqrt{5})^2$$

$$B = \ln \frac{1}{2} + \ln \frac{2}{3} + \ln \frac{3}{4} + \dots + \ln \frac{99}{100}$$
حل في \mathbb{R} المعادلات التالية

$$\ln(x+2) = \ln x^2 (2 \cdot \ln(x-1) = 0) (1$$

$$ln(2x^2-x) = 2ln(x-2) (4 \cdot ln(2x-3) = ln(x+4)(3$$

$$2\ln(x+1) = \ln(x+5) + \ln(2x+2) (5$$

$$\ln |2x+1| + \ln |x-1| = \ln 2(7 \cdot (\ln x)^2 + 4\ln x - 5 = 0(6$$

$$\ln\left(\frac{x+2}{x-1}\right) \le 1 (3^{\circ} \ln(x+1) \le 0 (2^{\circ} \ln x \ge 1 (1$$

$$(\ln x)^2 - \ln x \ge 0 (5 \cdot \ln(x^2 - 2x) \le \ln(4x - 5)(4$$

$$\ln(x-1) - \ln 3 > \ln 2 - \ln(x+4)$$
 (5)

 \mathbb{R}^2 حل في \mathbb{R}^2 الجمل التالية

$$\begin{cases} (e^{x} - 1)(2e^{2x} + 5e^{x} - 3) = 0 \\ x + \ln(y^{2} + 1) = 0 \end{cases} \begin{cases} x^{2} + 2y = 16 \\ \ln \frac{x}{y} = -\ln 3 \end{cases}$$

نعتبر كثير الحدود P للمتغير الحقيقي x حيث:

$$P(x) = 2x^3 + 3x^2 + x - 6$$

P(x) = (x-1).Q(x):نم بین ان P(1) = 0 ،ثم بین ان (1 حيث Q(x) كثير حدود من الدرجة الثانية يطلب حسابه.

$$P(x) \le 0$$
 والمتراجحة $P(x) = 0$ والمتراجحة \mathbb{R}

 $2\ln x + \ln(2x+3) \le \ln(6-x)$ استنتج حلول المتراجحة

ادرس تغيرات كل من الدوال التالية

$$[0,+\infty]$$
 والمعرفة على المجال $f(x) = \frac{\ln x}{x}$ (1

$$]0,+\infty[$$
 والمعرفة على المجال $f(x) = (\ln x)^2 + 1(2$

$$\mathbb{R}$$
 * والمعرفة على $f(x) = x \ln x^2$ (3

$$[0,+\infty]$$
 والمعرفة على المجال $f(x) = \frac{2-\ln x}{x}$ (4

$$[0,1]$$
 والمعرفة على المجال $f(x) = \frac{1}{\ln x}$ (5)

$$]0,e[\,\cup\,]e;+\infty[$$
 معرفة على المجال معرفة $f(x)=\frac{\ln x+1}{\ln x-1}$

$$\mathbb{R}-\left\{-2,2\right\}$$
 معرفة على المجال $f(x)=x+\ln\left|\frac{x-2}{x+2}\right|$ (7

$$f(x) = \ln \left| \frac{x}{2-x} \right|$$
:بادالة معرفة على [2 ، 0]ب

وليكن (C) تمثيلها البياني.

1)أدرس تغيرات f وادرس الفروع اللانهائية لـ(C)

ين أن (C) يقبل النقطة $\omega(1;0)$ كمركز تناظر $\omega(1;0)$

(C) و (Δ) بنم أرسم (Δ) و (Δ)) جد معادلة المماس ((Δ)) عند

 $h(x)=x^2+1-\ln x$: I=]0، $+\infty[$ الله معرفه على $h(x)=x^2+1-\ln x$

$$h(x)$$
 استنتج إشارة $h(\frac{1}{\sqrt{2}})$ ادرس تغيرات $h(x)$ أدرس تغيرات

$$f(x) = x + \frac{\ln x}{x}$$
 دالة عددية معرفة على اب: $f(x)$

.
$$I$$
 على $f'(x) = \frac{h(x)}{x^2}$ على أن أن أحسب أن أحسب أن أن أحسب أن أن أحسب أن أن أحسب أن أن أن أ

ب)استنتج إتجاه تغير الدالة f .

$$f$$
 أحسب $\lim_{x\to 0} f(x)$ أ $\lim_{x\to 0} f(x)$ أحسب أ $\lim_{x\to 0} f(x)$

$$(C_f)$$
 المستقيم $y=x$ أبر هن أن المستقيم $y=x$ ذا المعادلة $y=x$ أبر هن أن المستقيم (C_f) ، ثم أرسم (C_f))

ا) نعتبر الدالة
$$g$$
 المعرفة على المجال $g(x) = \ln(1+x) - x$ بمايلي: $g(x) = \ln(1+x) - x$

و کا کا
$$g'(x)$$
 نام بین أن $g'(x)$ اکتاب $g'(x)$ من $g'(x)$ متناقصة تماما علی $g'(x)$ متناقصة تماما علی $g'(x)$

ب) أستنتج أن
$$g(x) \leq 0$$
 لكل x من $g(x) = 0$. []. I) نعتبر الدالة العددية $g(x) = 0$ للمتغير الحقيقي $g(x) = 0$

و (C) هو المنحنى البياني
$$f(x) = x + \ln\left(\frac{x+1}{x-1}\right)$$

الممثل للدالة
$$f$$
 في معلم متعامد ومتجانس $(0;\vec{i};\vec{j})$ الممثل للدالة f في معلم متعامد ومتجانس $D_f=]-\infty;-1[\cup]1;+\infty[$ بين أن $D_f=]-\infty;-1[\cup]1;+\infty[$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f(x)$$

$$f'(x) = \frac{x^2-3}{x^2-1}$$
 :D من $f(x) = \frac{x^2-3}{x^2-1}$ بين أنه من أجل لكل $f(x) = \frac{x^2-3}{x^2-1}$

$$D_f$$
ب)ادرس تغیرات f علی $\infty+$ ، 1 [،استنتج تغیرات f علی D_f دا) تحقق أن المستقیم $y=x$ مقارب مائل لـ $y=x$

ب) أدرس إشارة
$$\left(\frac{x+1}{x-1}\right)$$
 استنتج الوضع النسبي

المنحنى (C) والمستقيم (
$$\Delta$$
).

يا
$$g$$
 دالة عددية معرفة على g (1) يا g دالة عددية معرفة على g

g(x) أحسب g(3) ، g(3) ثم إستنتج إشارة g(3) .

: حيث $\mathbb{R}-\{2\}$ دالة عددية معرفة على f -2

وليكن (γ) المنحني الممثل لها $f(x) = 2 - x + \frac{\ln|x-2|}{x-2}$

 $f'(x) = -\frac{g(x)}{(x-2)^2}$:D $_f$ من من أجل كل $_{x}$ من أرثبت أن من أجل أ

 $f(1) \cdot f(-1) \cdot f(0)$ ب) أدر س تغير ات الدالة f ، ثم أحسب y=-x+2 مستقيم مقارب مائل للمنحني (γ) .

د)-أدرس وضعية المنحني (γ) بالنسبة للمستقيم (Δ) . ف) بر هن على وجود مماسين للمنحني (γ) معامل توجيه كل منهما (1-) .ك) إنشئ (γ)

 $g(x)=x-\frac{1}{x}-2\ln x$ دالة عددية معرفة $g(x)=x-\frac{1}{x}$

. $g'(x) = \frac{(x-1)^2}{x^2}$ بین ان: $g'(x) = \frac{(x-1)^2}{x^2}$ بین ان:

g(x) ثم استنتج إشارة g(1)

 $f(x)=x+\frac{1}{x}-(\ln x)^2-2:$ الة عددية معرفة]0,+ ∞ عددية معرفة (II

 (C) واليكن ($\mathrm{C})$ منحناها البياني في م.م.م

 $\lim_{x\to +\infty} f(x)$ بين أن $\lim_{x\to +\infty} \frac{(\ln x)^2}{x} = 0$ ، ثم احسب (۱-1)

 $x \in \left]0,+\infty\right[$ من اجل کل $f(\frac{1}{x}) = f(x)$ ب) تحقق ان $f(\frac{1}{x}) = f(x)$ من اجل کل

ج)احسب $\displaystyle \lim_{x o 0} f(x)$ ثم فسر النتيجة هندسيا.

y=x منحاه المستقيم y=x

3)أنشئ المنحنى (C) في المعلم السابق.

$$f(x) = 1 - \frac{\ln x^2}{x}$$
 ب: \mathbb{R}^* بادرلة عددية معرّفة على

 $(o;\vec{i};\vec{j})$ تمثیلها البیاني في مستو مزود بم.م.م (C)

(C)-أدرس تغيرات الدالة fوالفروع اللانهائية للمنحنى (C) أدرس تغيرات الدالة f0 الذي معادلته أنّ المنحنى (C) يقطع المستقيم (f1 الذي معادلته f2 في نقطتين يطلب تعيين احداثياتهما.

. ? ماذ تستنتج f(-x) + f(x): ماذ

 α ارين ان المعادلة:f(x)=0تقبل حلا وحيدا f(x)=0

4) أثبت أن(C) يقبل مماسا d) يشمل النقطة A(0;1) ويمس المنحنى A(0;1) في نقطتين يطلب تعيين احداثياتهما.

المحتى (ع) عن المحتى يعطب عبين المداية الله (C) أوجد معادلة للمماس (d). 5) أرسم (d) ثم (C).

ناقش حسب قيم الوسيط الحقيقي m عدد حلول المعادلة: f(x) = mx + 1

 $g(x) = 1 - \frac{\ln x^2}{|x|}$ ب: $g(x) = 1 - \frac{\ln x^2}{|x|}$ دالة عددية معرّفة على g(x)

(γ) تمثيلها البياني في المعلم السابق.

- بين ان g زوجية .

حون در اسة تغير ات g ،ار سم (γ) علل ذلك بكالوريا 2004ع ط $f(x) = x + \ln \left| e^x - 2 \right|$ الدالة العددية حيث: f - I

 $(x)=x+\inf_{i\in \mathbb{N}}$ کے مستو مرود بم.م.م $(x,\overline{i};\overline{j})$ کے تعلقہ البیانی فی مستو مزود بم.م.م

 $D_{\rm f}=\left]-\infty;\ln2\right[\cup\left]\ln2;+\infty\right[$ بين ان -1

 $f(x) = 2x + \ln |1 - 2e^{-x}|$ ب-بین أن:

 $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$

احسب $\lim_{\substack{x \xrightarrow{\succeq} \ln 2}} f(x)$ و $\lim_{\substack{x \xrightarrow{\succeq} \ln 2}} f(x)$ ثم فسر النتيجة بيانيا

د- ادرس اتجاه تغير الدالة f ثم ارسم جدول تغير اتها

 (Δ) و (Δ) و (Δ) و (Δ) و (Δ) و (Δ) و (Δ) معادلتاهما على التوالي : Δ $y = x + \ln 2$ و Δ $y = x + \ln 2$ ب عين نقط تقاطع (Δ) مع محور الفواصل . جـأنشئ المنحنى (Δ).

ادالة عددية معرفة على $]\infty+;1-[$ كمايلي :

 $h(x) = x^2 + 2x + \ln(x+1)$

 $\lim_{x \xrightarrow{\succ} -1} h(x)$ و $\lim_{x \to +\infty} h(x)$ احسب (1

بین ان $\frac{1+2(x+1)^2}{x+1}$ و استنتج اتجاه تغیرات (2 h) این ان $\frac{1+2(x+1)^2}{x+1}$ الدالة $\frac{1}{x}$ و انجز جدول تغیراتها.

x واستنتج اشارة h(x) حسب قيم h(0)

: حدية معرفة على] $-1;+\infty$ لة عددية معرفة على f(II)

واليكن (C) منحناها البياني $f(x) = x - 1 - \frac{\ln(x+1)}{x+1}$

ا احسب f(x) أم فسر النتيجة هندسيا. ا $\lim_{x \xrightarrow{\sim} -1} f(x)$

 $\underset{u\to\infty}{\lim}\frac{lnu}{u}=0$ باستخدام النتيجة $\frac{e^t}{t}=+\infty$ النتيجة باستخدام النتيجة النتي

 $\lim_{x\to +\infty} f(x)$ جـ) استنتج

(C) استنتج وجود مقارب مائل ل $\lim_{x \to \infty} [f(x) - (x-1)]$ د

هـ)ادرس وضعية (C) بالنسبة للمستقيم المقارب المائل

f بین ان $\frac{h(x)}{(x+1)^2}$ ثم سجل جدول تغیرات $f'(x) = \frac{h(x)}{(x+1)^2}$

3) بين ان المنحنى(C) يقطع المستقيم الذي معادلته

 $\hat{y} = \hat{y}$ في نقطة وحيد فاصلتها محصورة بين 3,2 و 3,3

4) ارسم المنحنى(C). بكالوريا 2009ع ت