ثانوية الإخوة شطارة باتنة

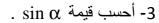
المراجعة رقم 1

تمرین 1:

من نقطة A تقع في أسفل مستو أملس تماما ، يميل على الأفق بزاوية (α) نقذف جسما ، (α) نعتبره نقطة مادية وفق خط الميل الأعظم بسرعة $\overline{V_A}$ فيصل إلى النقطة O بسرعة قدر ها $\overline{V_A}$ عند اللحظة t=0 كما بالشكل (1) . يمثل البيان (1) تغيرات فاصلة القذيفة بدلالة الزمن. ويمثل البيان (2) تغيرات سرعة القذيفة على محور التراتيب بدلالة الزمن.

1- أدرس حركة الجسم (S) على المستوي المائل.

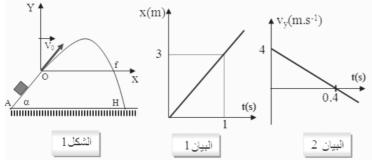
2- استنتج من البيانين 1 ، 2 مركبتي شعاع السرعة $\overline{\, {
m V}_{_{0}}}$ ثم أحسب طويلته .



$$v_{\Lambda}$$
 أحسب AO = 1,5 m أحسب -4

t(s) المدى الأفقي (Of) المدى الأفقي (
$$^{(s)}$$

6- أوجد إحداثيي النقطة H نقطة أصطدا بالأرض $g = 10 \, m/s^2$



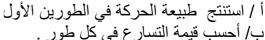
<u>غړبن 2</u>

على محز بكرة مهملة الكتلة تدور بحرية حول محور دورانها الأصلي(Δ) يمر خيط مهمل الكتلة غير مرن يحمل في في أحد طرفيه جسما S_1 وبطرفه الآخر جسم S_2 لهما نفس الكتله

ا نضع فوق $S_{_1}$ جسم مجنح $M_{_1}=m_{_2}=100~{
m g}$ نضع فوق $M_{_1}=m_{_2}=100~{
m g}$

(d) من نقطة الانطلاق تسمح بمرور الجسم S_1 ولا تسمح بمرور S_1 . تحرر الجملة $S(S_2,S_1)$ من السكون دون سرعة ابتدائية نمثل في البيان التالي تغيرات سرعة حركة الجملة بدلالة الزمن .

1- من البيان



ب/ احسب فيمه النسارع في كل طور . 2- أحسب المسافة d بطريقتين مختلفتين.

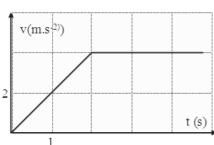
2- احسب المساك لل بنطريدين المحتمدين. 3- بتطبيق قانون نيوتن الثاني أوجد عبارة الته

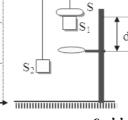
و- بنطبيق فانول نيونر
 في الطور الأول .

4- مما سبق استنتج قيمة الكتلة m

5- في أي المرحلتين تحقق مبدأ العطالة مع التعليل ؟

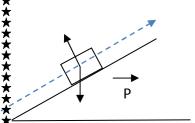
 $g = 10 \, m/s^2$





الحل النموذجي للمراجعة رقم01

التمرين 01



R

1- دراسة الحركة على المستوى المائل.

الجملة: جسم

المرجع: سطح الأرض و هو غااليلي

القوى المؤثرة: \overrightarrow{P} ، \overrightarrow{R} (كما في الشكل)

 $\overrightarrow{P} + \overrightarrow{R} = m \cdot \overrightarrow{a}$: بتطبیق قانون نیوتن الثانی نجد

بالإسقاط الجبري على محور الحركة الموجه ينتج:

 $-\mathbf{m} \cdot \mathbf{g} \cdot \sin \alpha = \mathbf{m} \cdot \mathbf{a}$

 $a = -g \cdot \sin \alpha$:

المسار مستقيم و التسارع ثابت إذن: الحركة مستقيمة متغيرة بانتظام.

2- استنتاج مركبتي شعاع السرعة من البيانين 1 ، 2

ندرس حركة القذيفة في المعلم (O,x,y)

الجملة: جسم المرجع: سطح الأرض و هو غاليلي

القوى المؤثرة: P

 $\overrightarrow{P} = m \cdot \overrightarrow{a} \Rightarrow \overrightarrow{a} = \overrightarrow{g}$: بتطبیق قانون نیوتن الثانی نجد

. $a_{v} = 0$: ينتج (O x) ينتج على المحور

 $\frac{\mathrm{d}v_{x}}{\mathrm{d}t}$ = 0 \Rightarrow v_{x} = v_{0x} = v_{0} \cdot \cos α : * بمكاملة العلاقة الأخيرة بالنسبة للزمن نجد

* بمكاملة العلاقة الأخبرة بالنسبة للزمن نجد:

 $\frac{dx}{dt} = v_0 \cdot \cos \alpha \Rightarrow x = v_0 \cdot (\cos \alpha) \cdot t + x_0 = x = v_0 \cdot (\cos \alpha) \cdot t \quad (x_0 = 0)$

* ومنه حركة مسقط القذيفة وفق المحور (Ox) مستقيمة منتظمة و بالتالي سرعتها ثابتة

 $\mathbf{x} = \mathbf{v}_{0} \cdot (\cos \alpha) \cdot \mathbf{t}$: عليه تكون معادلة حركتها وفق هذا المحور

 $x = 3 \cdot t$: نجد أن *

 $v_{0x} = v_0 \cdot (\cos \alpha) = 3$: بالمطابقة ينتج *

. $a_y = g$: بالإسقاط الجبري على المحور (Oy) ينتج $a_y = g$

 $\frac{dV_y}{dt} = g \Rightarrow V_y = g \cdot t + V_{0y} = g \cdot t + V_0 \cdot \sin \alpha$: بمكاملة العلاقة الأخيرة بالنسبة للزمن نجد *

 $v_v = 10 \cdot t + 4$: من البيان 2 نجد أن

 $v_{oy} = v_{o} \cdot (\sin \alpha) = 4$: بالمطابقة ينتج *

 $v_0 = \sqrt{v_{0x}^2 + v_{0y}^2} = \sqrt{3^2 + 4^2} = 5 \text{ m} \cdot \text{s}^{-1}$: $\overline{v_0}$ implies that $\overline{v_0} = \sqrt{v_{0x}^2 + v_{0y}^2} = \sqrt{3^2 + 4^2} = 5 \text{ m} \cdot \text{s}^{-1}$

: sin α حساب قيمة

$$v_{0y} = v_0 \cdot \sin \alpha = 4 \Rightarrow \sin \alpha = \frac{4}{v_0} = \frac{4}{5} = 0.8$$

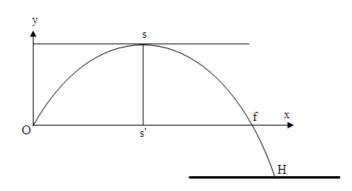
4- حساب سرعة الجسم عند النقطة A

بتطبیق مبدأ انحفاظ الطاقة على الجملة (جسم + أرض) بین النقطتین A و O ینتج :

$$Ec_A + Epp_A + W(\overline{R}) = Ec_O + Epp_O$$

$$\frac{1}{2}\mathbf{m}\cdot\mathbf{v}_{A}^{2} = \frac{1}{2}\mathbf{m}\cdot\mathbf{v}_{O}^{2} + \mathbf{m}\cdot\mathbf{g}\cdot(\mathbf{AO})\cdot\sin\alpha \Rightarrow \mathbf{v}_{A}^{2} = \mathbf{v}_{O}^{2} + 2\cdot\mathbf{g}\cdot(\mathbf{AO})\cdot\sin\alpha \quad : \mathbf{v}_{A}^{2} = \mathbf{v}_{O}^{2} + 2\cdot\mathbf{g}\cdot(\mathbf{v}_{O}^{2} + \mathbf{v}_{O}^{2} + \mathbf{v}_{O}$$

$$v_A = \sqrt{v_O^2 + 2 \cdot g \cdot (AO) \cdot \sin \alpha} = 7 \text{ m} \cdot \text{s}^{-1}$$
 : $v_A = \sqrt{v_O^2 + 2 \cdot g \cdot (AO) \cdot \sin \alpha} = 7 \text{ m} \cdot \text{s}^{-1}$



-5 حساب المسافة (Of) المدى الأفقي للقذيفة $\frac{Of}{2} = OS' \quad \text{ball both}$ من خواص القطع المكافئ $t_{s'} = t_s = \frac{t_f}{2} \; :$ ومنه :

 $v_{_{y}}$ نلاحظ أن $_{c}$ هي اللحظة التي تنعدم فيها مركبة شعاع السرعة $_{c}$ و من البيان 2 نستنتج أن $t_{_{\rm S}}=0.4\,{\rm s}$ إذن : $t_{_{\rm f}}=0.8\,{\rm s}$

و من معادلة الحركة وفق (Ox) نجد:

$$x_{f} = Of = 3 \cdot t_{f} = 2.4 \text{ m}$$

6- إيجاد إحداثيي النقطة H نقطة أصطدام القذيفة بالأ
 لدينا: (x_u,y_u)

$$=-(AO)\cdot\sin\alpha=1.2~\mathrm{m}$$
 : نلاحظ من الشكل أن

$$x = 3 \cdot t$$
 ... (1) : من البيان 1 لدينا

$$v_y = -10 \cdot t + 4$$
 : دينا 2 لدينا *

بمكاملة العلاقة الأخيرة نجد:

$$\frac{dy}{dt} = -10 \cdot t + 4 \Rightarrow y = -5 \cdot t^2 + 4 \cdot t \quad \cdots \quad (2)$$

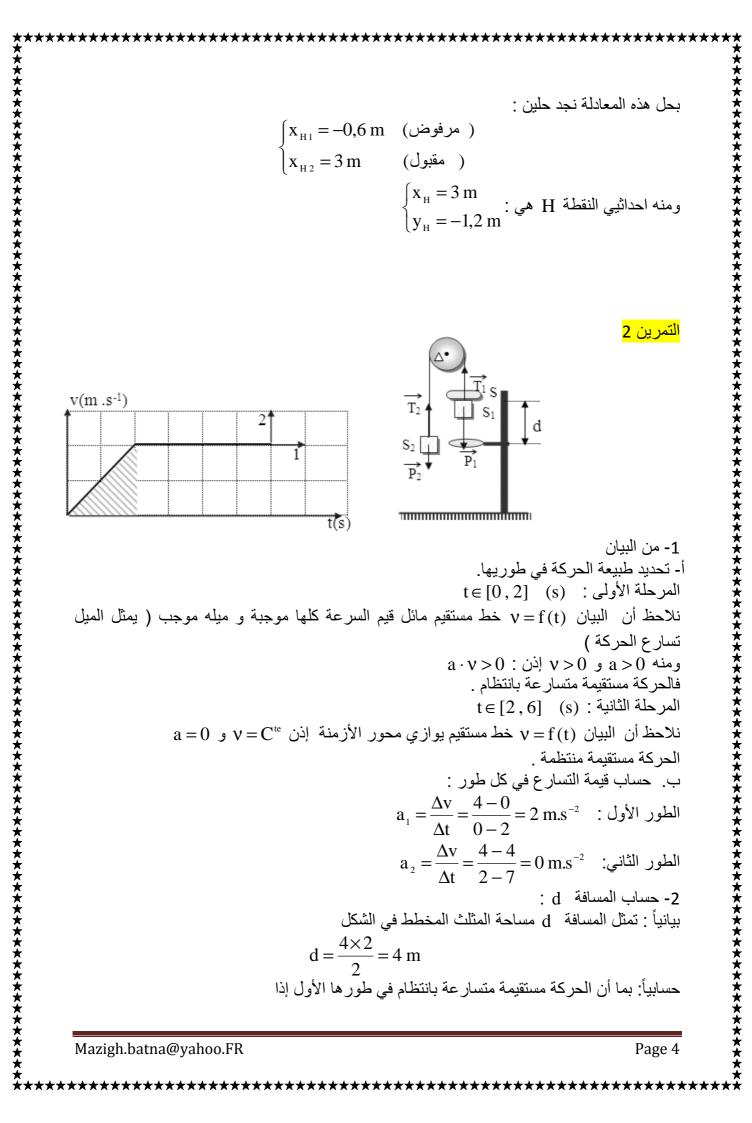
 $t = \frac{x}{3}$: من العلاقتين (1) نجد

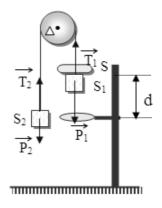
$$y = -5 \cdot \frac{x^2}{9} + 4 \cdot \frac{x}{3} = -0.55 \cdot x^2 + 1.33 \cdot x$$
 بالتعویض في العلاقة (2) نجد

تمثل العلاقة الأخيرة معادلة مسار القذيفة و بالتعويض بإحداثيات النقطة H ينتج:

$$y_H = -1.2 = -0.55 \cdot x_H^2 + 1.33 \cdot x_H$$

$$egin{aligned} x_{_{\rm H\, I}} = -0.6\,{
m m} & {
m o}{
m o}{
m o}{
m o}{
m o} \ x_{_{\rm H\, 2}} = 3\,{
m m} & {
m o}{
m o}{
m o}{
m o}{
m o}{
m o} \ x_{_{\rm H}} = 3\,{
m m} & {
m o}{
m$$





$$a_1 = \frac{\Delta v}{\Delta t} = \frac{4 - 0}{0 - 2} = 2 \text{ m.s}^{-2}$$
 : لطور الأول

$$a_2 = \frac{\Delta v}{\Delta t} = \frac{4-4}{2-7} = 0 \text{ m.s}^{-2}$$
 الثاني:

$$d = \frac{4 \times 2}{2} = 4 \text{ m}$$

$$y = \frac{1}{2}a \cdot t^2 + v_o \cdot t + y_o$$

t = 2s نجد

$$d = y - y_0 = \frac{1}{2} \times 2 \times 2^2 + 0 = 4m$$

3- كتابة عبارة التسارع في كل طور الطور الأول:

المرجع: سطح الأرض و هو غاليلي

* الجملة: جسمان (S·S.)

 $\overrightarrow{T_i}$ ، $\overrightarrow{P_i}$: القوى المؤثرة على الجملة

 $\overrightarrow{P}_1 + \overrightarrow{T}_1 = (m_1 + m) \cdot \overrightarrow{a}_1$: بتطبیق قانون نیوتن الثانی نجد

 $P_1 - T_1 = (m_1 + m) \cdot a_1 \cdots (1)$ بالإسقاط الجبري على محور الحركة ينتج

* الجملة : جسم *

 \overrightarrow{T}_2 , \overrightarrow{P}_2 : القوى المؤثرة على الجملة:

 $y=\frac{1}{2}a\cdot t^2+v_o\cdot t+$ $\overline{P_i}+\overline{T_i}=(m_i+p_i-p_i-p_i)$ $P_i-T_i=(m_i+m)\cdot a_i \quad \cdots \quad (1):$ $P_i-T_i=m_i+m_i+m_i \quad a_i \quad \cdots \quad (2):$ $P_i-P_2=(m_i+m_2+m)\cdot a_i \Rightarrow a_i=$ $\overline{P_i}+\overline{T_i}=0$ $P_i-P_i=m_i+m_i+m_i \quad a_i \quad \cdots \quad (3):$ $\overline{P_i}+\overline{T_i}=0$ $\overline{P_i}+\overline{P_i}=0$ \overline بتطبيق قانون نيوتن الثاني نجد : $\overrightarrow{P_2} + \overrightarrow{T_2} = m_2 \cdot \overrightarrow{a_1}$: الخيط عديم الإمتطاط فتسارع الجملتين هو

 $-P_{2}+T_{2}=m_{2}\cdot a_{1}$... (2): بالإسقاط الجبري على محور الحركة ينتج

 $T_1 = T_2$: البكرة مهملة الكتلة إذن

بجمع العلاقتين (1) و (2) نجد:

$$P_1 - P_2 = (m_1 + m_2 + m) \cdot a_1 \Rightarrow a_1 = \frac{m}{m_1 + m_2 + m} g$$

الطور الثاني:

المرجع: سطح الأرض و هو غاليلي

* الجملة: جسم *

 $\overrightarrow{T_{i}}$ ، $\overrightarrow{P_{i}}$: القوى المؤثرة على الجملة

 $\overrightarrow{P_1} + \overrightarrow{T_1} = \overrightarrow{m_1} \cdot \overrightarrow{a_2}$: بتطبیق قانون نیوتن الثانی نجد

 $P_{_{\! 1}}-T_{_{\! 1}}=m_{_{\! 1}}\cdot a_{_{\! 2}}$... (1): بالإسقاط الجبري على محور الحركة ينتج

 (S_1) جيم (S_2) جيم (S_3) جيم (S_4) القوى الموثرة على الجملة : \overline{T}_2 ، \overline{P}_3 + \overline{T}_3 = m_2 ، \overline{P}_3 + \overline{T}_3 = m_3 \overline{P}_3 + \overline{T}_3 = m_4 \overline{P}_3 + \overline{T}_3 = m_5 \overline{P}_4 + \overline{T}_3 = m_5 \overline{P}_4 + \overline{T}_3 = m_5 \overline{P}_4 + \overline{T}_3 = m_5 + \overline{T}_4 = m_5 + m_5 = m_5 + m_5 = m_5 = m_5 + m_5 = $m_$

$$P_1 - P_2 = (m_1 + m_2) \cdot a_2 \Longrightarrow a_2 = 0$$

$$a_1 = \frac{m}{m_1 + m_2 + m} g = 2 \text{ m} \cdot \text{s}^{-2}$$
 : لاينا

$$m = \frac{a_1(m_1 + m_2)}{g - a_1} = \frac{2(0.1 + 0.1)}{10 - 2} = 0.05 \text{ kg}$$