الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

ثانوية: عبد الحميد ابن باديس - أولاد سلّام-

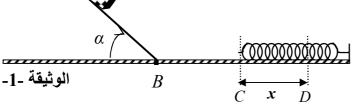
السنة الدراسية :2014/2013 المستــــوى: 2تقىني.ر باضــــــ

اختبار الثلاثي الأول في مادة: العلوم الفيزيائية

المدة: 2 سا

التمرين الأول: (06 نقاط)

تملأ عجلة سيارة بالهواء عند $2^{\circ}C$ و تحت الضغط 2,1bar . الحجم الداخلي للعجلة V=301 . نعتبر هذا الحجم ثابتا


- 1- احسب الحجم المولى تحت هذه الظروف.
- 2- ما كمية مادة الهواء وكتلته داخل الاطار ؟
- 3- بعد قطع السيارة لمسافة معينة ، راجع السائق ضغط الإطار فوجد 2,3bar. ماهي إذن درجة حرارة الهواء داخل الإطار ؟ أعط النتيجة بوحدة $^{\circ}C$
- 4- هل قيم الضغط المنصوح بها من طرف صانعي إطارات العجلات بالنسبة للهواء تبقى نفسها صالحة إذا احتوت الإطارات على غاز الأزوت (N_2) ؟ يعظى: 1bar=10⁵pa ، R = 8,314j/mol.k $M(N2) = 28 g.mol^{-1}$, $M_{(\mu | \mu)} = 29 g/mol$

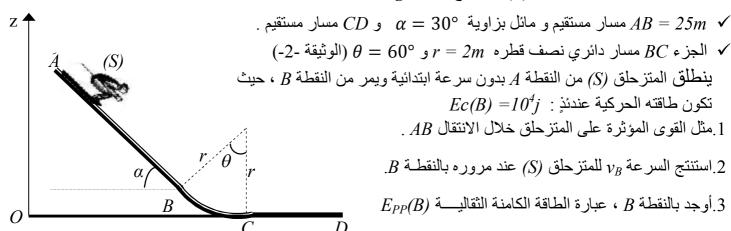
التمرين الثانى: (06 نقاط)

(g=10N/Kg) نهمل جميع الاحتكاكات ونأخذ

 (Δ) نصف قطر ها r=5cm قابلة للدور ان حول محور ثابت أفقى فطر ها يمر من مركزها و عزم عطالتها بالنسبة للمحور (Δ) هو $J_{/\Delta}$ ، خيطا غير قابل للامتطاط و مهمل m=500g کتلته و (S) کتلته فی طرفه جسم صلب ((S) کتلته الکتله و الکتله و (S)قابل للانز لاق فوق مستوى مائل بزاوية $lpha=30^\circ$ بالنسبة للمستوي الأفقي .

(لاحظ الوثيقة -1-)

 $_{\cdot}$ v_{B} ا من الموضع $_{\cdot}$ بدون سرعة ابتدائية و بعد قطع مسافة $_{\cdot}$ $_{\cdot}$ مسارت سرعته $_{\cdot}$ مسافة $_{\cdot}$


- . B عند الموضع 1.
- 2. بتطبيق مبدأ انحفاظ الطاقة على (S) بين الموضعين A و (S) احسب شغل القوة (S) المطبقة من طرف الخيط على الجسم(S) و استنتج شدتها.
 - . ويمة $J_{/\!\!A}$ عزم عطالة البكرة AB بنطبيق مبدأ انحفاظ الطاقة على P خلال الانتقال AB ، حدّد قيمة AB
- C الى الموضع B ينفلت الخيط ، فيتابع B حركته على السكة B فيلتقي و هو مار بالنقطة B. D بنابض ثابت مرونته K=50~N/m ، فيضغطه ليتوقف عند النقطة
 - أ- صف التحولات الطاقوية التي حدثت على الجملة (الجسم + النابض) .
 - . استنتج المسافة $\chi{=}CD$ التي انضغط بها النابض

الصفحة 2/1

الوضعية الادماجية (80 نقاط)

(g=10N/Kg) و نأخذ وياكات مهملة على المسار ABC و نأخذ وياكات مهملة على المسار

CD و BC ، AB: ينتقل متزحلق نعتبره جسما صلبا BC ، كتلته مع لوازمه BC ، BC ، AB و على سكة مكونة من ثلاثة أجزاء

 $Ec(B) = 10^4 i$: تكون طاقته الحركية عندئذ AB القوى المؤثرة على المتزحلق خلال الانتقال AB

B الستنتج السرعة V_B للمتزحلق V_B عند مروره بالنقطة.

 $E_{PP}(B)$ عبارة الطاقة الكامنة الثقالية B عبارة الطاقة الكامنة الثقالية

 $E_{PP}(B)$ بدلالة g و g و g احسب (S) للمتزحلق (S) المتزحلق

الوثيقة _2_

O نختار الحالة المرجعية لقياس الطاقة الكامنة الثقالية المستوي الأفقى المار من

4. بتطبيق مبدأ انحفاظ الطاقة على الجملة (متزحلق + أرض) بين الموضعين B و C ، أوجد عبارة السرعة v_c للمتزحلق عند مروره بالنقطة C بدلالة $E_{C}(B)$ و $E_{PP}(B)$ و سب عند

. f= 200N ، يخضع المتزحلق إلى قوة احتكاك ثابتة و معاكسة لجهة الحركة شدتها CD ، يخضع

D إذا كانت سرعة المتزحلق تنعدم عند الموضع

ت- احسب عمل قوة الاحتكاك خلال الانتقال CD.

CD أو جد المسافة

◄ مهما كان عدد الأخطاء التي وقعت فيها … مهما كان تقدمك بطيئًا ..

فأنت تسبق من لا يحاولون فعل أي شيء.

الصفحة 2/2 انتهي ع .حدد 2013/12