المستوى: 2 (ع +هك +ر) السلسلة رقم 02 ،المرجــح في المستوى الأستاذ: ب م العربي س د 12 / 13

3) عين احداثيى النقطة D بحيث تكون النقطة O مركز اللمسافات المتساوية للنقط A و D و D.

4) عين المجموعة (E) للنقط M من المستوى حيث

 $\left\| -\overrightarrow{MA} + \overrightarrow{MB} + 3\overrightarrow{MC} \right\| = \left\| \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} \right\|$

 $[\mathrm{AC}]$ مثلث قائم في A_{e} متلث قائم في A_{e} متلث قائم في A_{e} متلث قائم في $\mathrm{ABC}_{\mathrm{o}7}$

 $(A, \overrightarrow{AB}, \overrightarrow{AC})$ عين إحداثيات كل من $B \cdot A$ و عين إحداثيات كل من

2)عين إحداثيي G مرجح الجملة

 $(A, \overrightarrow{AB}, \overrightarrow{AC})$ في المعلم (A; 1)،(B; 2)، (C; 1)}

3) عين ثم أنشئ مجموعة النقط M من المستوي بحيث

 $\|\overrightarrow{MA} + 2\overrightarrow{MB} + \overrightarrow{MC}\| = 2 \|\overrightarrow{MI} - \overrightarrow{MB}\|$

08 اختر الإجابة الصحيحة من بين الإجابات المقترحة .

استقامية. \overline{A} و C ثلاث نقط من المستوي ليست على استقامية.

 $\left\{(A,2);(B;-3)\right\}$ و G مرجح الجملة

التي لا تقبل من أجلها الجملة α قيمة العدد الحقيقي α

مرجحا هي: $\{(A,\alpha);(B,\alpha+1);(C;2\alpha+3)\}$

 $\alpha = -1$ (\Rightarrow ' $\alpha = \sqrt{2}$ (\because ' $\alpha = 1$ ()

نا كان $\overrightarrow{AB} = \frac{3}{4} \overrightarrow{AC}$ فإن A مرجح الجملة :

 $\big\{ (B,-4); (C;3) \big\} (\Rightarrow` \big\{ (B,4); (C;-4) \big\} (\hookrightarrow` \big\{ (B,1); (C;2) \big\} (\mathring{}$

3) مجموعة النقط M من المستوي التي يكون من أجلها

الشعاعين $\overrightarrow{AC} = 2\overrightarrow{MA} - 3\overrightarrow{MB}$ و \overrightarrow{AC} متوازيين هي:

أ)دائرة مركزها G ونصف قطرها 3.

ب) مستقيم يوازي \overrightarrow{AC} ويمر بالنقطة G مرجح الجملة. جـ) مجموعة خالية

ABC 09 مثلث كيفي. نعتبر الجملة التالية:

 $\alpha \in \mathbb{R}$ حيث (A، 2)، (B، - α -1)،(C،2 α)..(*)

أ-1)عين قيم α حتى تقبل الجملة (*)النقطة α مرحجا لها

 $\alpha = 3$ إنشيئ النقطة G_{α} من أجل (2

(3) إنشئ كلا من النقطتين J ، I منتصفا القطعتين [AB] ،

[AC]على الترتيب. اثبت أن النقط G، J ، I في استقامية.

|| 2-4 MA MB || MC+6 || = 18:

ب) نزود المستوي بمعلم متعامد ومتجانس (\vec{i} , \vec{i}) نزود

C(2,-4); B (2,2); A(1,3):

 α عين إحداثيي النقطة α مرحجة الجملة (*)بدلالة α

بين أن مجموعة النقط G_lpha عندما lphaيمسح R^* هي مستقيم2يطلب تعيين معادلة له.

ABC 10 مثلث F ، I ، E نقط بحبث:

 $\overrightarrow{AF} = \frac{1}{3}\overrightarrow{AC} \cdot \overrightarrow{CI} = \frac{2}{3}\overrightarrow{CB} \cdot \overrightarrow{AE} = \frac{1}{2}\overrightarrow{BC}$

علم النقط F ، I ، E ثم بين انها على استقامة واحدة.

 $(0\cdot\vec{i}\cdot\vec{j}\cdot\vec{j})$ نزود المستوي بمعلم متعامد ومتجانس نزود المستوي نمعلم نتعامد ومتجانس

D(x;-1), C(3;1), B(2;-2), A(1,0) لتكن النقط

1)أحسب الأطوال AC ، AB و BC

2)استنتج نوع المثلث ABC

3)عين العدد الحقيقي x حتى يكون ABDC مربعا.

AB = 8cm و B نقطتان من المستوي حيث A O2

 $(B^3)^{(A^5)}$ عين وانشئ النقطة $(B^3)^{(A^5)}$

2)عين مجموعة النقط Mمن المستوي في كل حالة

||5MA + 3MB|| = ||MA - MB|| ()

 $||5\overrightarrow{MA} + 3\overrightarrow{MB}|| = 8MA$ (\hookrightarrow

03 في المستوي المنسوب إلى معلم متعامد ومتجانس

D(2,5) ، C(-1,5) ، B(1,-1) ، A(3,2) : نعتبر النقط

1) عين إحداثيي النقطة G مركز ثقل المثلث ABC

 $\{(A,2);(B,-1);(C,1)\}$ مرجح للجملة D اثبت ان D

3)عين مجموعة النقط Mمن المستوي بحيث

 $\|2\overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC}\| = \|\overrightarrow{MA} - \overrightarrow{MC}\|$

C،B،A 04 ثلاث نقط من المستوي ليست في استقامية

 $2\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$ نقطة من المستوى تحقق G

 $4\overrightarrow{AG} = (\overrightarrow{AB} + \overrightarrow{AC})$ عرّف G، ثم بيّن ان (1

و \vec{v} شعاعان من المستوي حيث \vec{u} (2

 $\vec{v} = 2\vec{PA} - \vec{PB} - \vec{PC} \vec{u} = 2\vec{MA} + \vec{MB} + \vec{MC}$

 \overrightarrow{MG} عبر عن الشعاع \overrightarrow{u} بدلالة

 \cdot P بين أن الشعاع $\stackrel{\leftarrow}{v}$ مستقل عن النقطة

 $\| \vec{\mathbf{u}} \| = \| \vec{\mathbf{v}} \|$ من المستوي بحيث $\| \vec{\mathbf{v}} \| = \| \vec{\mathbf{v}} \|$

C · B · A (I 05 نقط من المستوى ليست في استقامية.

 $(\alpha \in \mathbb{R})$ (1).. $\{(B, 2\alpha + 1), (A, \alpha)\}$ لتكن الجملة

G عين قيمة العدد α حتى تقيل الجملة (α) مرجحا (1

 $\alpha = 1$ في حالة G انشئ النقطة G

 $(O;\vec{i}\;;\vec{j})$ المستوي مزود بمعلم متعامد ومتجانس ($(O;\vec{i}\;;\vec{j})$).

 $x \in \mathbb{R}$ نعتبر C(3;x) ، B(2;-3) ، A(2;3) نعتبر

استقامية $C \cdot B \cdot A$ عين قيمة العدد X حتى تكون النقط $C \cdot B \cdot A$ في استقامية x = 0 : نضع)

ا)أحسب اطوال اضلاع المثلث ABC ثم عين طبيعته.

ب)عين احداثيي النقطة G

 $|\overrightarrow{MA} + 3\overrightarrow{MB}| = 12$: عين ثم إنشئ مجموعة النقط M حيث

 $(0 \cdot \vec{i} \cdot \vec{j})$ نزود المستوي بمعلم متعامد ومتجانس

C(0;2), B(2;-3), A(-1,1) لتكن النقط 1)عين احداثيى النقطة I مركز ثقل المثلث ABC

 $\{(A,-1);(B,1);(C,3)\}$ عين احداثيي G مرجح الجملة

ABC <mark>11 مثلث قائم في Aحيث: AB=4 و AC=3</mark> $(4, \overline{AB}, \overline{AC})$ ينسب المستوي إلى المعلم ينسب لتكن G نقطة من المستوي تحقق المساواة الشعاعية: عين احداثيي النقطة M في هذا المعلم. 15 أ C ، B ، A ثلاث نقط ليست على استقامة واحدة حیث α عدد حقیقی $AG = AC + \alpha AB$ مرجح H_{α} مجموعة قيم α التي تجعل النقطة D مرجح (1 1)بين أن G هي مرجحا للجملة: ـ (C·α) (B· -2) (A ·1)} للجملة المثقلة $\{(A, -\alpha) \cdot (B, \alpha) \cdot (C, 1)\}.....(*)$ $^{\prime}$ نفرض أن 1-lpha. أ) أنشئ النقطة $^{\prime}$ $(\overline{AB}A,\overline{AC})$ من أجل $D \in \alpha$ إحد إحداثيا H_{α} في المعلم (2 ب) بين أن الرباعي ABCG متوازي أضلاع يطلب تعيين . $\alpha \in \{2,-1\}$ من أجل H_{α} انشئ النقطة مساحته S ومحيطه P. 4) عين مجموعة النقط M من المستوي حيث: ج)عين ثم أنشئ مجموعة النقط M من المستوي بحيث: $||\overline{MA} - 2\overline{MB} + 2\overline{MC}|| = ||\overline{MA} + \overline{MB} - 2\overline{MC}||$ $\| - MA MB + MC \| = AB$ ب) المستوي مزود بمعلم متعامد ومتجانس (\vec{i} , \vec{i}) المستوي مزود بمعلم متعامد (O; \hat{i} ; \hat{j}) المستوي مزود بمعلم متعامد ومتجانس C(3,1); B (0,4); A(-2,2) لتكن النقط 1) أحسب أطوال أضلاع المثلث ABC مستنتجا نوعه. C(0,3); B (4,1); A(0,1):نعتبر النقط أ) عين إحداثي النقطة G مرجحة الجملة (*) بدلالة α . H_{α} عين إحداثيات النقطة α ب) هل يمكن ان تكون G مركز ثقل المثلث ABC ؟ Δ من Δ تنتمى إلى مستقيم. Δ من Δ فإن Δ بين أنه مهما كان جـ) بين أن مجموعة النقط G عندما α يمسح R^* هي ABC مثلث قائم في Aحيث: 4=AB و 3=AC مستقيم يطلب تعيين معادلة له. تعطى المعادلة . $\{(A,1);(B,-2);(C,3)\}$ مرجح الجملة . $AB = \alpha$ مثلث متقايس الأضلاع وحيث ABC1-أ)أنشئ النقطة G وأحسب GA2 ، GB2 ، GC2 لتكن (Γ) مجموعة النقط من المستوي التي تحقق: ب) عين مجموعة النقط M من المستوي التي تحقق: $\|\overrightarrow{MA} - 4\overrightarrow{MB} + \overrightarrow{MC}\| = \|\overrightarrow{MA} - 2\overrightarrow{MB} + \overrightarrow{MC}\|$ $MA^2 - 2MB^2 + 3MC^2 = k$ (A; i; j) المستوي مزود بمعلم متعامد ومتجانس المستوي مزود بمعلم تحقق أن النقطة Bتنتمي الى المجموعة (Γ) . $3\vec{i} = \overrightarrow{AC}$ و $4\vec{i} = \overrightarrow{AB}$: حيث $\overrightarrow{MA} - 2\overrightarrow{MB} + \overrightarrow{MC}$ بين ان الشعاع GA^2 ، GB^2 ، GC^2 وأحسب G وأحسب أ) عين احداثيات النقطة لتكن النقطة G مرجح الجملة الثقلة ب) عين مجموعة النقط M من المستوى التي تحقق: $GM = \alpha \frac{\sqrt{3}}{2}$ بين ان $\{(A,1); (B,-4); (C,1)\}$ $MA^2 - 2MB^2 + 3MC^2 = k$ ABC 17 مثلث متقايس الساقين حيثAB استنتج طبيعة المجموعة (Γ) محددا عناصرها الميزة . 1) عين النقطة H مركز ثقل المثلث ABCثم أنشئها. $(O; \vec{i}; \vec{j})$ المستوي مزود بمعلم متعامد ومتجانس 2) لتكن G نظيرة H بالنسبة إلى (BC) ، جد العدد الحقيقي α حتى تكون α مركز المسافات المتناسبة للنقط نعتبر النقط (A(1,0)·B(-2,3)·C(0,-3)·D(2,3) مرفقة المرفقة بالمعاملات α ، α ، α على الترتيب C ، B ، A بالمعاملات: 2m+3، 3، m-1، على الترتيب 3-أ) عين مجموعة النقط M من المستوي التي تحقق: مرجحا للجملة $m G_m$ مرجحا الملة $m G_m$ مرجحا الملة $||\overrightarrow{MA} - 2\overrightarrow{MB} - 2\overrightarrow{MC}|| = ||\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}||$ $\{(A,m-1);(B,-2);(C,3);(D,2m+3)\}$ ب) عين مجموعة النقط ن من المستوي التي تحقق: ${
m G_m}$ احسب بدلالة ${
m m}$ احداثيي النقطة (2 ||2MA - MB - MC|| = ||MA + MB + MC||ما هو المحل الهندسي للنقطة G_{m} عندما يتغير m في $(0; \vec{i}; \vec{j})$ المستوي المنسوب إلى معلم متعامد ومتجانس ($(0; \vec{i}; \vec{j})$ $\mathbf{m}=-2$ من أجل $\mathbf{G}_{\mathbf{m}}$ من أجل، $\mathbb{R}-\left\{ 1\right\}$ I والتكن C(-2;0) ، B(2;-2) ، A(1;1) والتكن \overrightarrow{AD} عبر عن \overrightarrow{AG}_{m} بدلالة \overrightarrow{AB} و \overrightarrow{AG}_{m} منتصف القطعة [CB] والتكن G مرجح الجملة المثقلة $\overrightarrow{3AG_{-2}} = -(\overrightarrow{DC} - 2\overrightarrow{CB})$:ثم استنتج أن $\{(A;2),(B;1),(C;1)\}$ C · B · A (1 14 ثلاث نقط من المستوى ليست على 1) عين إحداثي كلا من I و G ثم علم النقط I ، C ، B ، A و 1 استقامة واحدة بكل عدد حقيقي ٨ نرفق مركز المسافات 2) بين أن النقط A ، I و G في استقامية . المتناسبة M للنقط C · B · A المرفقة بالمعاملات: مجموعة النقط M من المستوي (Γ) (3 1+1 ، λ - 1،1 على الترتيب. $||2\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}|| = 2\sqrt{5}$: عين النقطة M بواسطة مساواة شعاعية . ر نفرض أن $\lambda = 3$. أنشئ النقطة M في هذه الحالة $\lambda = 3$ (Γ) أحسب الطول AI ثم تحقق أن النقطة تنتمي إلى أ $\mathbb R$ عين مجموعة النقط M عندما يرسم λ المجموعة $\mathbb R$ بين أن (٢) هي دائرة يطلب تعيين عناصر ها المميزة