
2008/2007:

الفرض المحروس الأول للثلاثي الثاني

$$E=6V$$

$$C$$

$$R_{2}=2k\Omega \quad R_{1}=1k\Omega$$

$$.K$$

$$M \quad A$$

$$B \quad M$$

 R_1

.5

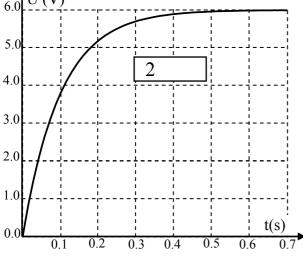
.(1)

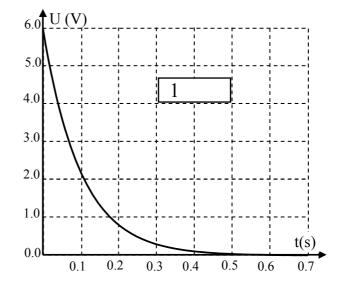
.4

. U_R

 $t = \infty$ t = 0 .6 .7

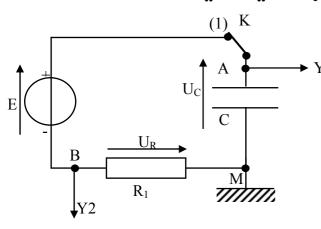
.


 $\begin{array}{ccc} & .U_C & & . \\ A & U_C = A.e^{-\alpha.t} : & & . \end{array}$


 $U_C = A.e^{-\alpha.t} :$ $.\alpha \quad A \qquad .$

.u Α ' τ' ثم

. U_{C}


 U_{C}

rechid yacine@yahoo.fr:

تصحيم الفرض المحروس الأول للثلاثي الثاني

.E

 U_1 .2 $: Y_1$

$$U_1 = U_{AM} = U_C$$

: Y_2
: $U_2 = U_{BM} = -U_{MB} = -U_R$

 $U_R = -U_2$:

 $:U_{C}$.4

 $U_{\rm C}(0) = 0$: U_{C} .2

i

- U_R U_R

 $: U_R$

 $U_R = R.i$:

 U_{R}

5.0

3.0

2.0

1.0

 U_{R}

.(1)

6.0 U (V) U_C :

 $U_{\rm C}$

 $U_C = C^{te}$

 $U_C = 0.63U_{max}$: $t = \tau$

 $: U_{C}$ $U_C = 0.63 \times 6 = 3.78 \text{ V}$ $\tau = 0.1s$:

 $\tau = R.C$:

 $C = \frac{\tau}{R} = \frac{0.1}{10^3} = 1.0.10^{-4} F = 100 \,\mu\text{F}$

: t = 0.6

$$i = \frac{U_R}{R}$$
: $U_R = R.i$

 $i(0) = 6/10^3 = 6.10^{-3} A = 6 \text{ mA}$: t = 0 $U_R = 6 \text{ V}$: i = 0 $t = \infty$

$$: U_C$$
 .

:

$$U_{C} + R.i = 0 : \qquad U_{C} + U_{R} = 0$$

$$i = C.\frac{dU_{C}}{dt} : \qquad q = C.U_{C} \qquad i = \frac{dq}{dt} :$$

$$R C \frac{dU_{C}}{dt} = 0 : \qquad (1)$$

$$U_C + R.C. \frac{dC}{dt} = 0 : (1)$$

 $A \qquad U_C = A.e^{-\alpha.t} : \qquad .$

 $:\frac{dU_{C}}{dt}$

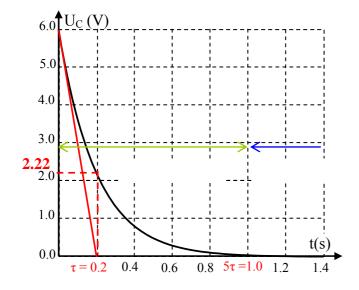
$$\frac{dU_{C}}{dt} = (A.e^{-\alpha.t})' = -\alpha.A.e^{-\alpha.t}$$

$$A.e^{-\alpha.t} + R.C.(-\alpha.A.e^{-\alpha.t}) = 0$$
:

$$A.e^{-\alpha.t}.(1 - R.C.\alpha) = 0$$
:

$$\alpha = \frac{1}{R.C}$$
 $(1 - R.C.\alpha) = 0$ $e^{-\alpha.t}$ 0 $A:$ لدينا

 $lpha = rac{1}{R.C}$ نتيجة : $U_{\rm C} = A.e^{-lpha t}$ هو حل للمعادلة التفاضلية بشرط أن


تحدید قیمة A:

$$A = E = 6 \text{ V}$$
 : با الشروط الإبتدائية : $U_{C}(0) = A.e^{0} = E$ و منه $U_{C}(0) = E$ و منه $U_{C}(0) = E$

: au' حساب

$$au'=0.2~{
m s}$$
: لدينا $au'=0.2~{
m s}$ و منه $au'=0.10^{-1}{
m s}$ إذن $au'=R_2.C$ الدينا $au'=R_2.C$ يصورة كيفية $au_C=f(t)$ بصورة كيفية :

t(s)	0	τ	5τ
$U_{C}(V)$	E = 6	0.37.E = 2.22	0

