
الفرض الثالث في العلوم الفيزيائية - 3 أ - الموضوع الأول - المدة : 1 ساعة 45 د + 15 د (اختيار الموضوع)

التصحيح

التمرين الأول (10 نقط)

1 - در اسة الحركة :

Oz بتطبيق القانون الثاني لنيوتن $ec{f}+ec{P}+ec{II}=m\;ec{a}$ المحور

$$rac{dv}{dt}+rac{k}{m}v=gigg(1-rac{
ho_f}{
ho_S}igg)$$
 : ومنه $mg-kv-
ho_f$ V $g=m$ a هذه المعادلة من الشكل $C_2=rac{
ho_f}{
ho_S}$ ، $C_1=rac{k}{m}$ ، حيث $rac{dv}{dt}+C_1$ $v=g\left(1-C_2
ight)$: هذه المعادلة من الشكل

 C_2 و C_1 : C

$$C_{2}=0,19$$
 : موبالتعویض نجد $\left(rac{dv}{dt}
ight)_{0}=g\left(1-C_{2}
ight)=8,1$ مند $v=0$ ، وبالتعویض نجد وبالتالی ، $v=0$

: ومنه، $C_1v_l=g\left(1-C_2
ight)$ ، وبالتالي، $\frac{dv}{dt}=0$ ، فإن، $v=v_l$

$$C_1 = \frac{g(1-C_2)}{v_l} = \frac{10 \times (1-0.19)}{1.02} = 7.94 \text{ s}^{-1}$$

: k و $ho_{
m s}$. $ho_{
m s}$ و

$$\rho_S = \frac{\rho_f}{0.19} = \frac{860}{0.19} = 4.5 \times 10^3 \ kg/m^3$$
 ومنه $\frac{\rho_f}{\rho_S} = 0.19$

$$k = m \ C_1 = 36,7 \times 10^3 \times 7,94 \approx 0,3 \ kg / s$$
 ومنه $C_1 = \frac{k}{m}$ ليينا

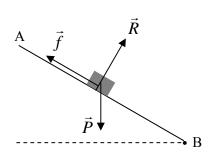
4 - شدة دافعة أرخميدس:

$$V = \frac{m}{\rho_c} = \frac{36.7 \times 10^{-3}}{4.5 \times 10^3} = 8.15 \times 10^{-6} \ m^3$$
 . فو حجم الزيت المزاح و هو نفسه حجم الكرة ، $\Pi = \rho_f \ V \ g$

وبالتالي
$$\Pi = 860 \times 8,15 \times 10^{-6} \times 10 = 7,0 \times 10^{-2} N$$

: t' قيمة اللحظة - 5

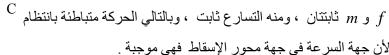
$$t' = 5 \ \tau = 5 \times \frac{m}{k} = 5 \times \frac{36,7 \times 10^{-3}}{0,3} = 0,61 \ s$$


التمرين الثاني (10نقط)

$$W_{\vec{p}}=mgh=0.3 imes10 imes0.5=1.5~J$$
 : عمل قوة الثقل

ب) بتطبيق نظرية الطاقة الحركية بين A و B

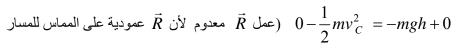
$$\Delta E_C = W_{\vec{P}} + W_{\vec{f}} + W_{\vec{R}}$$


$$W_{ec{f}} = -0.5~J$$
 : ومنه $E_{cB} - 0 = 1.5 + W_{ec{f}}$

 $ec{P}+ec{R}+ec{f}=m$ من بتطبيق القانون الثاني لنيوتن (- 2

بإسقاط العلاقة الشعاعية على المحور الموضح في الشكل:

$$(1) a = \frac{-f}{m} a$$
 ومنه $-f = m a$


f=0,5N ومنه، -0,5=-f imes AB ، نحسب قوة الاحتكاك من علاقة العمل

$$a = \frac{-0.5}{0.3} = -1.67 \ m/s^2$$
 بالتعويض في العلاقة (1)

 $E_{cC}-E_{cB}=-f imes BC$: C و B بتطبيق نظرية الطاقة الحركية بين النقطتين ($v_C=1,82~m/s$ ، $v_C^2=rac{10}{3}$ ، ومنه $v_C^2=rac{1}{2} imes 0.3 v_C^2$ $v_C^2=-0.5 imes 1$

3 - بتطبيق نظرية الطاقة الحركية بين النقطتين C و E :

$$E_{cE} - E_{cC} = W_{\vec{P}} + W_{\vec{R}}$$

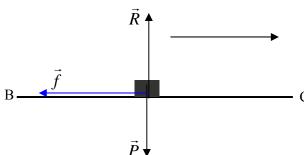
في كل لحظة بسبب عدم وجود الاحتكاك).

$$h = \frac{v_C^2}{2g} = \frac{10}{60} = 0,167 \ m$$

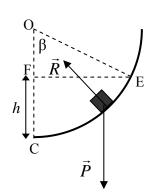
$$\beta = 33.6^{\circ}$$
 ومنه $\cos \beta = \frac{OF}{r} = \frac{1 - 0.167}{1} = 0.833$

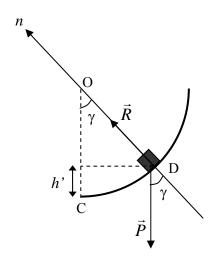
ب) بتطبيق القانون الثاني لنيوتن في النقطة D

: وبالإسقاط على المحور الناظمي : $\vec{P} + \vec{R} = m \; \vec{a}$


(1)
$$R = P\cos\gamma + m\frac{v_D^2}{r}$$
 : ومنه $R - P\cos\gamma = m a_n$

نحسب السرعة في النقطة D:


(2)
$$v_D^2 = v_C^2 - 2gh'$$
: ومنه $\frac{1}{2}mv_D^2 - \frac{1}{2}mv_C^2 = -mgh'$ $h' = r(1 - \cos \gamma) = 0.06 \ m$ ولدينا $\cos \gamma = \frac{r - h'}{r}$:


$$v_D^2 = \frac{10}{3} - 2 \times 10 \times 0,06 = 2,13$$
 : (2) بالتعويض في العلاقة

 $R = 0.3 \times 10 \; \cos 20 + 0.3 \times \frac{2.13}{1} = 3.45 \; N \; \; (1)$ بالتعويض في العلاقة

