
# ثانوية مهاجي محمد الحبيب الحبيب الحبيب (Ex- Lycée mixte Maraval - Oran) اختبار الفصل الثاني في العلوم الفيزيائية – بكالوريا علوم تجريبية - فبراير 2008 - المدة 3 ساعات

## التمرين الأول (6ن)

نعاير حجما  $V_A = 10 \text{ mL}$  من محلول مائي لحمض الإيثانويك  $CH_3COOH$  بواسطة محلول هيدروكسيد الصوديوم تركيزه المولي  $pH = f(V_b)$  . نمثل البيان  $C_b = 1.0 \times 10^{-1} \text{ mol/ L}$ 



- (  $pH_{E}$  ،  $V_{bE}$  ) وقطة التكافؤ (  $pH_{E}$  ، عيّن إحداثيي نقطة التكافؤ
- $V'=3\,\,\mathrm{mL}\,$  عند إضافة حجم  $CH_3COOH/\,CH_3COO^-$  عند الثنائية  $CH_3COOH/\,CH_3COO^-$  عند إضافة حجم  $V'=3\,\,\mathrm{mL}\,$ 
  - 3 أ) اكتب معادلة تفاعل المعايرة.
  - ب) أنشئ جدو لا لتقدم تفاعل المعايرة .
  - ج) احسب مقدار التقدم النهائي لهذا التفاعل .
  - د) احسب النسبة النهائية للتقدم ، واستنتج أن تفاعل المعايرة تام .
  - . عند التكافؤ  $[CH_3COOH]$  عند التكافؤ  $[CH_3COOH]$  عند التكافؤ  $[CH_3COOH]$

#### التمرين الثاني (4ن)

نمزج في بيشر حجما  $V_1 = 10 \text{ mL}$  من محلول مائي لإيثانوات الصوديوم (  $CH_3COONa$  ) تركيزه المولي

.  $C_2=10^{-2}~mol/~L$  وحجما  $V_2=20~mL$  وحجما  $V_2=20~mL$  وحجما  $C_1=10^{-2}~mol/~L$ 

 $_{1}$  معادلة التفاعل موضحا الثنائيات أساس / حمض في هذا التفاعل  $_{1}$ 

- 2 احسب ثابت توازن هذا التفاعل.
- 3 اوجد العلاقة بين ثابت التوازن والنسبة النهائية للتقدّم.
  - 4 احسب النسبة النهائية للتقدم

 $pK_{A2} = 4.8$  ،  $pK_{A1} = 3.8$  :  $CH_3COOH / CH_3COO^-$  ،  $HCOOH / HCOO^-$  يُعطى للثنائيتين على الترتيب

### التمرين الثالث (5 ن)

يتألف ثنائي قطب من ناقل أومي مقاومته  $\Omega=1000~\Omega$  ومكثفة فارغة سعتها  $C=50~\mu$  . نصله إلى قطبي مولد للتوتر قوته المحركة الكهربائية E = 12 V ومقاومته مهملة.

نقلق القاطعة K

1 – احسب مدة شحن المكثفة .

. التوتر بين طرفى الناقل الأومى أثناء الشحن  $u_{\rm R}$ 

إليك هاتان المعادلتان التفاضليتان:

(1) 
$$\frac{du_R}{dt} + RC u_R = 0$$

$$(2) RC\frac{du_R}{dt} + u_R = 0$$

أ) بواسطة التحليل البعدي بيّن أن إحدى هاتين المعادلتين التفاضليتن غير صحيحة .

ب) اوجد حل المعادلة التفاضلية الصحيحة.

ج) ارسم شكلا تقريبا للتوتر بين طرفي الناقل الأومى  $u_{\mathrm{R}}\left(t\right)$  أثناء شحن المكثفة .

. المخزنة في المكثفة عند نهاية الشحن .  $E_{c}$ 

 $^{\circ}$  - بواسطة تجهيز خاص نقرّب لبوسي المكثفة من بعضهما دون أن ننز عها من الدارة ، فتصبح سعتها  $^{\circ}$  -  $^{\circ}$  .

أ) احسب الطاقة  $E'_c$  المخزنة في المكثفة .

ب) كيف تفسر الفرق بين الطاقتين ؟

# التمرين الرابع (5 ن)

أراد تلميذ أن يتحقق من قيمة مقاومة وشيعة (r) ذاتيتها L=0.25~
m H ، وذلك بتركيبين مختلفين .

التركيب الأول: (شكل - 1)

مقاومتا الأمبير متر ومولد التوتر مهملتان ،  $E = 6 \ V$  .

بعد غلق القاطعة K قرأ التلميذ في النظام الدائم على الأمبير متر القيمة K التلميذ في النظام الدائم على

التركيب الثاني (الشكل - 2)

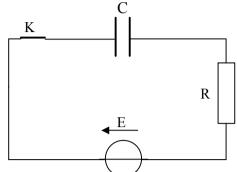
أضاف التلميذ ناقلا أو ميا مقاو مته  $\Omega = 10~\Omega$  على التسلسل مع الوشيعة .

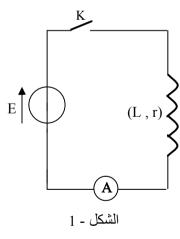
بواسطة إيصال الدارة إلى راسم اهتزاز مهبطي وبعد غلق القاطعة حصل التاميذ على البيان

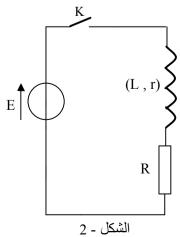
(3-1) (الشكل  $u_{\rm R}(t)$ 

r ما هي قيمة r التي حصّل عليها التلميذ في التركيب الأول r

ب الدارة لراسم الإهتزاز لمشاهدة ( $u_{R}(t)$  ؟ كيف يجب وصل الدارة لراسم الإهتزاز لمشاهدة  $u_{R}(t)$ 


 $_{--}$  هناك طريقتان لحساب  $_{I}$  في التركيب الثاني  $_{---}$ 


استعملهما واحسب ٢ .


4 - مثل شكلا تقريبيا للتوتر بين طرفي الوشيعة

في المجال الزمني [ ms ] موضحا عليه القيمتين

الحدّيتين .  $\rightarrow t \text{(ms)}$ 









 $u_{R}(V)$ 

10.4

الشكل - 3