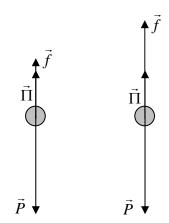
التمرين الأول (4 نقط)

ندرس حركة نواس بسيط طوله l=1 سواء . نهمل تأثير الهواء .

- . $l \frac{d^2 \theta}{dt^2} + g \sin \theta = 0$ الذر اسة الطاقوية إلى كتابة المعادلة التفاضلية للمطال الزاوي للنواس -1
 - $\theta = heta_0 \cos\left(\omega_0 t + arphi
 ight)$ هو شرط أن يكون حل هذه المعادلة التفاضلية من الشكل أ
 - . T_0 با اوجد في هذه الحالة عبارة النبض الذاتي ω_0 ، ثم استنتج عبارة الدور الذاتي ب
 - $\frac{d^2\theta}{dt^2} = f(t)$ التسارع الزاوي للنواس بدلالة الزمن 2
 - أ) اوجد قيمة ω_0 و ω_0 قيمة تسارع الجاذبية الأرضية في مكان التجربة .
 - . اوجد قيمة θ_0 السعة الزاوية للحركة
 - $eta=60^\circ$ نحرف النواس من وضع توازنه بزاوية $eta=60^\circ$ ونتركه .
 - أ) احسب سرعته V لحظة مروره بوضع التوازن
 - ب) احسب شدة توتر الخيط عند المرور بوضع التوازن.


التمرين الثاني (4 نقط)

Oz وفق المحور ho_s وكتلتها ho_s وكتلتها ho_s وكتلتها ho_s وكتلتها ، ho_s وفق المحور ho_s المحور على المحور على المحور في المحور على المحور في المحور ho_s .

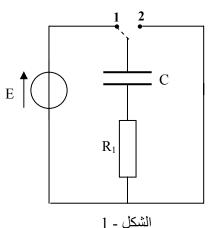
 $\rightarrow t(s)$

. $\vec{\Pi}$ عبارة عن ثابت ، ولدافعة أرخميدس أخضع الكرة أثناء سقوطها لقوة احتكاك مع الهواء شدتها f=k v^2

- 1 تبلغ الكرة سرعة حدّية في اللحظة t_1 ، ما هو الشكل الصحيح لتمثيل القوى
 - . على باختصار بعد اللحظة t_1 ؛ على باختصار
- 2 بتطبيق القانون الثاني لنيوتن ، اوجد المعادلة التفاضلية التي تعطي سرعة الكرة .
 - $\frac{dv}{dt} = 8,3 0,15 \ v^2$: الكرة بالشكل : 3 الكوة التفاضلية لسرعة الكرة بالشكل : 3
 - . t_0 أ) احسب تسارع الكرة عند اللحظة
 - . t_1 احسب سرعة الكرة عند اللحظة
 - ج) احسب قيمة النسبة $\frac{
 ho_f}{
 ho_c}$ ، حيث ho_f هي الكتلة الحجمية للهواء .
 - $g = 9.8 \ m/s^2$. k د) احسب ثابت الاحتكاك .

 $\frac{a\theta}{dt^2} \left(rd/s^2 \right)$

الشكل _ 2


التمرين الثالث (4 نقط)

. $R_1 = 100~\Omega$ استعملنا مولدا مثاليا للتوتر وربطناه مع مكثفة سعتها C وناقل أومي مقاومته Ω استعملنا مولدا مثاليا للتوتر وربطناه مع مكثفة سعتها Ω وناقل أومي مقاومته Ω نصل البادلة للوضع Ω من أجل شحن المكثفة Ω

 $e^5 \approx 148$ يُعطى

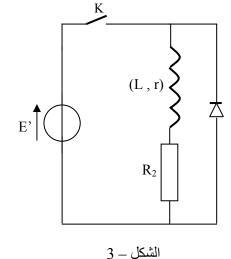
. t=0 نصل البادلة للوضع 2 في اللحظة

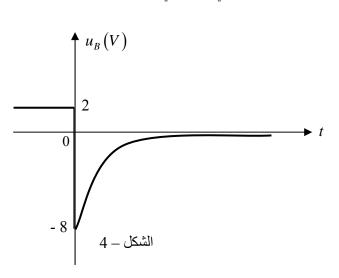
- التوتر بين طرفي المكثفة أثناء التوريغ . u_{c} التوتر بين طرفي المكثفة أثناء التفريغ . u_{c}
 - . هو حل لهذه المعادلة التفاضلية $u_C=E~e^{-rac{t}{RC}}$ بيّن أن 2
 - $lnu_{C}=f\left(t
 ight)$ تغيرات (2 الشكل الشكل المقابل المقاب
 - (ln هو اللوغارية مالنيبري).
 - $ln u_C = f(t)$ اكتب العبارة البيانية لـ (أ
 - $lnu_{C}=f\left(t
 ight)$ ب اكتب العبارة النظرية لـ (ب
 - ج) بمطابقة العبارتين اوجد
 - قيمة ثابت الزمن au واستنتج سعة المكثفة .
 - القوة المحركة الكهربائية E للمولد

 $\begin{array}{c|c}
 & ln u_C \\
\hline
50 & t \text{ (ms)}
\end{array}$

الشكل – 2

II - نركب في (الشكل - 3) الدارة المتشكلة من وشيعة ذاتيتها


وناقل أومي مقاومتها R_2 وصمام r=10 و وصمام L=0,1 H


تنائي لحفظ الدارة ومولد مثالي للتوترات قوته المحركة الكهربائية 'E' .

t=0 نغلق القاطعة ، ولما تستقر شدة التيار في الدارة على القيمة ${
m I}$ نفتح القاطعة في اللحظة

 $u_{B}=f\left(t
ight)$ نمثّل بعد ذلك في الشكل -4 التوتر الكهربائي بين طرفي الوشيعة

- R_2 و I استنتج من البيان قيمة I
 - . E' حسب قيمة 2
- . t=0 عند اللحظة t=0 عند اللحظة عند اللحظة t=0

التمرين الرابع (4 نقط)

ندرس تفاعل محلول يود البوتاسيوم (K^+, Γ^-) مع محلول بيروكسو ثنائي كبريتات البوتاسيوم (K^+, Γ^-) . ننمذج هذا (1) $2 \, \Gamma^-_{(aq)} + S_2 O_8^{2-}_{(aq)} \rightarrow I_{2(aq)} + 2 \, SO_4^{2-}_{(aq)}$ التفاعل بالمعادلة الكيميائية التالية $V_1 = 200 \, \text{mL}$ من حجم نمزج في اللحظة $V_1 = 200 \, \text{mL}$ من محلول بيروكسو ثنائي كبريتات البوتاسيوم تركيزه المولى $V_2 = 200 \, \text{mL}$. $V_2 = 200 \, \text{mL}$

. في اللحظة t_1 في اللحظة المزيج المتفاعل حجما $V=20~\mathrm{mL}$ ونبرّده الإيقاف التفاعل

نعاير ثنائي اليود (I_2) الموجود في هذا الحجم بواسطة محلول ثيوكبريتات الصوديوم (I_2) الموجود في هذا الحجم بواسطة محلول ثيوكبريتات الصوديوم (I_2) $I_2 + 2 S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} + 2 I^-$ معادلة التفاعل هي $V_E = 10 \text{ mL}$ من محلول ثيوكبريتات .

- 1 انشىء جدول التقدم للتحول الكيميائي (1)
- $V_{\rm E}$ ، $V_{\rm C}$ ، $V_{\rm E}$ بدلالة $V_{\rm E}$ ، $V_{\rm E}$ ،
 - و اللحظة t_1 في اللحظة t_1 في اللحظة $x(t_1)$ في اللحظة $x(t_1)$ في اللحظة $x(t_1)$ في اللحظة والمحتود التعامل ا

التمرين الخامس (4 نقط)

pH ، وبعد الرج قسنا m=60~mg ، المحلول في الدرجة m=60~mg ، وبعد الرج قسنا m=60~mg ، وبعد الرج ق

- أ) اكتب معادلة التفاعل بين حمض الإيثانويك والماء
 - ب) احسب التركيز المولى C_A للحمض
- . ج.) بيّن أن نسبة التقدّم النهائي للتفاعل تُكتب على الشكل $au=rac{\left[H_3O^+
 ight]}{C_A}$ ، ثم احسب قيمة au وبين أن التفاعل غير تام au
 - $pK_A = 4.74$ CH_3COOH / CH_3COO^- د) احسب ثابت توازن التفاعل ، ثم استنتج أن للثنائية
- $V=20~{\rm mL}$ من المحلول الحمضي السابق ونضيف له بعض القطرات من كاشف ملوّن . ثم نملاً سحاحة مدرجة بمحلول هيدروكسيد الصوديوم (Na^+ , OH^-) تركيزه المولي C_B ونضيفه تدريجيا للكأس . يتغير لون الكاشف عند إضافة الحجم $V_E=10~{\rm mL}$ من المحلول الأساسي
 - . C_B أ اكتب العلاقة بين V ، C_A ، V_E ، C_B قيمة أ
 - ب) ما هو الكاشف الملون من القائمة الأنسب لهذه المعايرة ؟ (تعليل مختصر)
 - ج) ما هو حجم الأساس المضاف من السحاحة عندما كان pH المزيج في الكأس 4,74 ؟

	أزرق البروموتيمول	أحمر الميثيل	الفينول فتالئين
مجال تغيّر اللون	6,0 - 7,6	4,2 - 6,2	8,2 - 10,0

$$C = 12$$
 , $O = 16$, $H = 1$